Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14,142)
  • Open Access

    ARTICLE

    Quick Construction of Femoral Model Using Surface Feature Parameterization

    Xiaozhong Chen∗,†, Kunjin He, Zhengming Chen∗,‡, Wei Xiang§

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 123-146, 2015, DOI:10.3970/mcb.2015.012.123

    Abstract To facilitate the modifying of femoral surface model, by dividing the femoral mesh into surface feature units bearing medical significance based on surface feature technology, a new approach of constructing femoral models using surface feature technology is proposed. Firstly, considering of femoral anatomy, the femoral triangle mesh model generated from the averaged point-clouds is divided into several specific regions, which are called feature regions; Secondly, feature parameters are defined and the constraints among them are set up, and feature surfaces are created by skinning the contours; Finally, the adjacent feature surfaces are connected by transition surfaces, and the parametric CAD… More >

  • Open Access

    ARTICLE

    Using 2D In Vivo IVUS-Based Models for Human Coronary Plaque Progression Analysis and Comparison with 3D Fluid-Structure Interaction Models: A Multi-Patient Study

    Hongjian Wang*, Jie Zheng, LiangWang, Akiko Maehara§, Chun YangII, David Muccigrosso, Richard BachkII, Jian Zhu**, Gary S. Mintz§, Dalin Tang*,‡,††

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 107-122, 2015, DOI:10.3970/mcb.2015.012.107

    Abstract Computational modeling has been used extensively in cardiovascular and biological research, providing valuable information. However, 3D vulnerable plaque model construction with complex geometrical features and multicomponents is often very time consuming and not practical for clinical implementation. This paper investigated if 2D atherosclerotic plaque models could be used to replace 3D models to perform correlation analysis and achieve similar results. In vivo intravascular ultrasound (IVUS) coronary plaque data were acquired from a patient follow-up study to construct 2D structure-only and 3D FSI models to obtain plaque wall stress (PWS) and strain (PWSn) data. One hundred and twenty-seven (127) matched IVUS… More >

  • Open Access

    ARTICLE

    Numerical Evaluation of Trabecular Bone Alterations: A Cell Method Application

    Francesca Cosmi*

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 87-105, 2015, DOI:10.3970/mcb.2015.012.087

    Abstract Bone tissue is a complex multi-scale material and its morphological and functional characteristics are influenced during one’s life by constant changes, physiological and pathological. A recent technique can classify the mechanical response of trabecular bone by simulating the application of loads with a Cell Method model derived from plane radiographic images of the proximal epiphyses in the patient’s hand fingers, thus complementing the individual assessment with a low cost exam. The mesoscale pathological modifications (i.e. due to osteoporosis) can be detected and quantified, despite the simplification due to the use of radiograms. In this work, this approach is validated using… More >

  • Open Access

    ARTICLE

    3D Fluid-Structure Interaction Canine Heart Model with Patch to Quantify Mechanical Conditions for Optimal Myocardium Stem Cell Growth and Tissue Regeneration

    Heng Zuo*, Dalin Tang*,†,‡, Chun Yang*,§, Glenn Gaudette, Kristen L. Billiar, Pedro J. del NidokII

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 67-85, 2015, DOI:10.3970/mcb.2015.012.067

    Abstract Right ventricular (RV) dysfunction is a common cause of heart failure in patients with congenital heart defects and often leads to impaired functional capacity and premature death. Myocardial tissue regeneration techniques are being developed for the potential that viable myocardium may be regenerated to replace scar tissues in the heart or used as patch material in heart surgery. 3D computational RV/LV/Patch models with fluid-structure interactions (FSI) were constructed based on data from a healthy dog heart to obtain local fluid dynamics and structural stress/strain information and identify optimal conditions under which tissue regeneration techniques could achieve best outcome. RV/LV/Patch geometry… More >

  • Open Access

    ARTICLE

    Hemodynamic Based Surgical Decision on Sequential Graft and Y-Type Graft in Coronary Artery Bypass Grafting

    Xi Zhao, Youjun Liu∗,†, Wenxin Wang

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 49-66, 2015, DOI:10.3970/mcb.2015.012.049

    Abstract Purpose: Sequential graft and Y-type graft are two different surgical procedures in coronary artery bypass grafting (CABG). The hemodynamic environment of them are different, that may cause different short-term surgical result and long-term patency. In this study, the short-term and long-term result of sequential and Y-type graft was discussed by comparing the hemodynamics of them. Materials and Methods: Two postoperative 3-dimensional (3D) models were built by applying different graft on a patient-specific 3D model with serious stenosis. Then zero-dimensional (0D)/3D coupled simulation was carried out by coupling the postoperative 3D models with a 0D lumped parameter model of the cardiovascular… More >

  • Open Access

    ARTICLE

    CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

    P. Jhunjhunwala∗,†, P.M. Padole∗,‡, S.B. Thombre∗,§

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 37-47, 2015, DOI:10.3970/mcb.2015.012.037

    Abstract CFD analysis plays an important role in the area of analysis of blood flow as in-vivo measurements of blood flow is costly and easily not accessible. This paper presents simulation of blood flow in healthy and stenosed coronary artery 2- D models. The simulation was done considering non-Newtonian behavior of blood and pulsatile nature of blood flow which is close to physical scenario. Pressure distribution, velocity distribution and wall shear were examined to understand their effect on Atherosclerosis. More >

  • Open Access

    ARTICLE

    Trans-scale Granular Modelling of Cytoskeleton: a Mini-Review

    Tong Li, Prasad KDV Yarlagadda, Adekunle Oloyede, Namal Thibbotuwawa, YuanTong Gu∗,†

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 17-35, 2015, DOI:10.3970/mcb.2015.012.017

    Abstract Living cells are the functional unit of organs that controls reactions to their exterior. However, the mechanics of living cells can be difficult to characterize due to the crypticity of their microscale structures and associated dynamic cellular processes. Fortunately, multiscale modelling provides a powerful simulation tool that can be used to study the mechanical properties of these soft hierarchical, biological systems. This paper reviews recent developments in hierarchical multiscale modeling technique that aimed at understanding cytoskeleton mechanics. Discussions are expanded with respects to cytoskeletal components including: intermediate filaments, microtubules and microfilament networks. The mechanical performance of difference cytoskeleton components are… More >

  • Open Access

    ARTICLE

    A Global Numerical Analysis of the “Central Incisor / Local Maxillary Bone” System using a Meshless Method

    S.F. Moreira, J. Belinha∗,† ,‡, L.M.J.S. Dinis∗,†, R.M. Natal Jorge∗,†

    Molecular & Cellular Biomechanics, Vol.11, No.3, pp. 151-184, 2014, DOI:10.3970/mcb.2014.011.151

    Abstract In this work the maxillary central incisor is numerically analysed with an advance discretization technique – Natural Neighbour Radial Point Interpolation Method (NNRPIM). The NNRPIM permits to organically determine the nodal connectivity, which is essential to construct the interpolation functions. The NNRPIM procedure, based uniquely in the computational nodal mesh discretizing the problem domain, allows to obtain autonomously the required integration mesh, permitting to numerically integrate the differential equations ruling the studied physical phenomenon. A numerical analysis of a tooth structure using a meshless method is presented for the first time. A two-dimensional model of the maxillary central incisor, based… More >

  • Open Access

    ARTICLE

    Fluid-Structure Interaction Analysis of Pulsatile Flow within a Layered and Stenotic Aorta

    Zheng-qi Liu, Ying Liu∗,†, Tian-tian Liu, Qing-shan Yang

    Molecular & Cellular Biomechanics, Vol.11, No.2, pp. 129-149, 2014, DOI:10.3970/mcb.2014.011.129

    Abstract In this paper, the hemodynamic characteristics of blood flow and stress distribution in a layered and stenotic aorta are investigated. By introducing symmetrical and unsymmetrical stenosis, the influence of stenosis morphology and stenotic ratio on the coupled dynamic responses of aorta is clarified. In the analysis, the in-vivo pulsatile waveforms and fully fluid–structure interaction (FSI) between the layered elastic aorta and the blood are considered. The results show that the fluid domain is abnormal in the stenotic aorta, and the whirlpool forms at the obstructed and downstream unobstructed regions. The maximum wall shear stresses appear at the throat of the… More >

  • Open Access

    ARTICLE

    Mass Transger in an Eccentric Annular Region Through Diffusion

    Umadevi. B, Dinesh P.A., Indira R., Vinay. C.V

    Molecular & Cellular Biomechanics, Vol.11, No.2, pp. 101-111, 2014, DOI:10.3970/mcb.2014.011.101

    Abstract The mass transfer in an eccentric annular region through diffusion by taking blood as a Newtonian fluid with the investigation of oxygen transfer and drug transport to the tissue cells in an eccentric catheterized artery is studied. The region bounded by eccentric circles in x-y plane is mapped conformally to concentric circles in \(\xi -\eta\) plane using a conformal mapping \(z = \lambda /1 - \zeta\). The resulting governing equations are analytically solved by using transformation for the concentration. Numerical computations are carried out to understand the simultaneous~effects of absorption parameter and eccentricity on the flow. ~The observation through the… More >

Displaying 12031-12040 on page 1204 of 14142. Per Page