Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    Boundary Element Analysis of Cracked Thick Plates Repaired with Adhesively Bonded Composite Patches

    J. Useche, P. Sollero, E.L. Albuquerque1, L. Palermo2

    Structural Durability & Health Monitoring, Vol.4, No.2, pp. 107-116, 2008, DOI:10.3970/sdhm.2008.004.107

    Abstract The fracture analysis of cracked thick plates repaired with adhesively bonded composite patches using a boundary element formulation is presented. The shear deformable cracked isotropic plate was modeled using the dual boundary method. In order to model the repair, a three parameter boundary element formulation was established. This formulation is based on Kirchhoff's theory for symmetric layer composite plates and considers the transversal deflection and two in-plane rotations. Interaction forces and moments between the cracked plate and the composite repair were modeled as distributed loading, and discretized using continuous and semi-discontinuous domain cells. Coupling equations, based on kinematic compatibility and… More >

  • Open Access

    ARTICLE

    Influence of an Atmospheric Pressure Plasma Surface Treatment on the Interfacial Fracture Toughness on Bonded Composite Joints

    J. Mohan1, D. Carolan1, N. Murphy1, A. Ivankovic1, D. Dowling1

    Structural Durability & Health Monitoring, Vol.3, No.2, pp. 81-86, 2007, DOI:10.3970/sdhm.2007.003.081

    Abstract The aim of this work is to investigate the influence of a variety of plasma treatments on the surface properties of an epoxy-based composite material and to establish a relationship between these properties and the subsequent mechanical behaviour of adhesively bonded joints. To this end, specimens were subjected to three different types of plasma treatment: two short treatments (2min) of He and He plus O2, and one long treatment (15min) of He plus O2. The variation in surface energy of the composite specimens was examined in each case over a period of up to 3 days using contact angle measurements.… More >

  • Open Access

    ABSTRACT

    Computational Modeling of Cracked Plates Repaired with Adhesively Bonded Composite Patches Using the Boundary Element Method

    J. Useche1, P. Sollero2, E.L. Albuquerque2, L. Palermo3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.3, pp. 175-182, 2008, DOI:10.3970/icces.2008.006.175

    Abstract The computational fracture analysis of cracked thick plates repaired with adhesively bonded composite patches using a boundary element formulation is presented. The shear deformable cracked isotropic plate was modeled using the Reissner's plate theory. In order to model the repair, a three parameter boundary element formulation, based on Kirchhoff's theory for symmetric layered composite plates was established. Interaction forces and moments between the cracked plate and the composite repair were modeled as distributed loads. Coupling equations, based on kinematic compatibility and equilibrium considerations for the adhesive layer, were established. In-plane shear-deformable model with transversal stiffness was considered in order to… More >

  • Open Access

    ABSTRACT

    Experimental Fracture Mechanics for Adhesive Joint Design

    Waruna Seneviratne1, John Tomblin2, Suranga Gunawardana3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.2, pp. 81-86, 2007, DOI:10.3970/icces.2007.004.081

    Abstract An experimental study was conducted to investigate the use of fracture mechanics to predict failure initiation of adhesive joints. Most practical plane fracture problems are mixed mode and failure initiation of adhesive joints is a result of such conditions. It is widely accepted that a useful method for characterizing the toughness of bonded joints is to measure the fracture toughness; energy per unit area needed to produce failure. For a given adhesive, mode mixity has a dependency towards fracture toughness and fracture toughness is directly associated with stress. Main goal in this investigation was to demonstrate the capability of utilizing… More >

  • Open Access

    ABSTRACT

    Nanocomposite Adhesive Bonding Using Graphite Nanofibers

    L. Roy Xu1, Charles M. Lukehart2, Lang Li2, Huacheng Kuai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.1, pp. 9-14, 2007, DOI:10.3970/icces.2007.003.009

    Abstract Graphitic carbon nanofibers were used to reinforce epoxy resin to form nanocomposite adhesive bonding. Good dispersion and polymer wetting of the GCNF component is evident on the nanoscale. Tensile and shear joint strength measurements were conducted for metal-metal and polymer-polymer joints using pure epoxy and nanocomposite bonding. Very little bonding strength increase, or some bonding strength decrease, was measured. More >

  • Open Access

    ARTICLE

    Shear Strength and Morphological Study of Polyurethane-OMMT Clay Nanocomposite Adhesive Derived from Vegetable Oil-Based Constituents

    Swarnalata Sahoo1,2*, Hemjyoti Kalita1, Smita Mohanty1,2, Sanjay Kumar Nayak1,2

    Journal of Renewable Materials, Vol.6, No.1, pp. 117-125, 2018, DOI:10.7569/JRM.2017.634155

    Abstract In the current work, we have synthesized vegetable oil-based polyurethane-OMMT clay nanocomposite (PUNC) adhesive with the incorporation of different wt% of organically modified nanoclay (1 to 5 wt%) into the biobased polyurethane (PU) matrix through in-situ polymerization process via ultrasonication method. At the initial stage, PU adhesive was prepared using polyol and partially biobased aliphatic isocyanate, wherein polyol was derived from the transesterified castor oil using ethylene glycol. The formation of PU and PUNC adhesive was confirmed using Fourier transform infrared (FTIR) spectroscopy analysis. The tensile strength of PU with different wt% of nanoclay was determined and the analysis showed… More >

  • Open Access

    ARTICLE

    Chitosan-g-PMMA/Kaolin Bionanocomposites for Use in Bioadhesive Bone-Cement Implants

    Arun Kumar Pradhan1,2*, Prafulla Kumar Sahoo1, Pradeep Kumar Rana2

    Journal of Renewable Materials, Vol.5, No.5, pp. 371-379, 2017, DOI:10.7569/JRM.2017.634129

    Abstract Chitosan grafted with poly(methyl-methacrylate) (PMMA) and adsorbed with kaolin functionalized as bioadhesive was prepared via emulsion polymerization technique and physiochemically characterized as a bone-graft substitute. The so prepared grafted bioactive bone cement (BBC) bionanocomposites (BNCs), chitosan-g-PMMA/kaolin, was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). The water uptake, retention ability and the nanosize particle arrangement in the polymeric BBC-BNCs were studied along with the mechanical and biodegradation properties. These preliminary investigations of the BNCs will open the door for their use in bioadhesive bone-cement implants in the future. More >

  • Open Access

    ARTICLE

    Natural Additive for Reducing Formaldehyde Emissions in Urea-Formaldehyde Resins

    Flávio Pereira1, João Pereira2, Nádia Paiva3, João Ferra3, Jorge Manuel Martins1,4, Fernão D. Magalhães1, and Luísa Carvalho1,4*

    Journal of Renewable Materials, Vol.4, No.1, pp. 41-46, 2016, DOI:10.7569/JRM.2015.634128

    Abstract This work studies the use of soy protein as a natural formaldehyde scavenger in wood particleboard production. The protein is incorporated in two forms: a) as a powder, during the blending process of wood particles with urea-formaldehyde binder resin, and b) as an aqueous solution, added at different times during resin synthesis. Analysis of variance (ANOVA) was used to evaluate the signifi cance level of two effects (amount of added soy and time of addition) on internal bond strength, thickness swelling, and formaldehyde content of the resulting panels. The results showed that soy protein can contribute to decrease the formaldehyde… More >

  • Open Access

    ARTICLE

    Adhesive Models to Understand the Sensitivity of Bio-Molecules to Environmental Signals

    Shaohua Chen*

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 97-106, 2008, DOI:10.3970/mcb.2008.005.097

    Abstract Recently, contact mechanics has been widely used to get some understanding of the biological adhesion mechanisms, such as cell-cell adhesion, insects' adhesion and locomotion. JKR theory is usually adopted as a basis, in which the interaction of molecules is considered in contrast to the classical Hertz solution. In this paper, two problems are summarized, which may give some insights to cells or bio-molecules sensitivity to environmental signals: (1) cell reorientation on a stretched substrate; (2) spontaneous detachment between cells or bio-molecules under the variation of environmental signals. The intention here is only to illustrate the possibilities that contact mechanics may… More >

  • Open Access

    ARTICLE

    Strain-induced Orientation Response of Endothelial Cells: Effect of Substratum Adhesiveness and Actin-myosin Contractile Level

    Hai Ngu*, Lan Lu*, Sara J. Oswald*, Sarah Davis*, Sumona Nag*, Frank C-P Yin

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 69-82, 2008, DOI:10.3970/mcb.2008.005.069

    Abstract Endothelial cells subjected to cyclic stretching change orientation so as to be aligned perpendicular to the direction of applied strain in a magnitude and time-dependent manner. Although this type of response is not the same as motility, it could be governed by motility-related factors such as substratum adhesiveness and actin-myosin contractile level. To examine this possibility, human aortic endothelial cells (HAEC) were uniaxially, cyclically stretched on silicone rubber membranes coated with various concentrations of fibronectin, collagen type IV and laminin to produce differing amounts of adhesiveness (measured using a radial flow detachment assay). Cells were subjected to 10% pure cyclic… More >

Displaying 41-50 on page 5 of 57. Per Page