Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (80)
  • Open Access

    REVIEW

    Recent Advancements in Biochar Functionalization from Crop Residues for a Green Future

    Omojola Awogbemi1,*, Daramy Vandi Von Kallon1, Ramesh C. Ray2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2191-2233, 2025, DOI:10.32604/jrm.2025.02025-0112 - 24 November 2025

    Abstract Increased human and industrial activities have exacerbated the release of toxic materials and acute environmental pollution in recent times. Biochar, a carbon-rich material produced from biomass, is gaining momentum as a versatile material for attaining a sustainable environment. The study reviews the application of functionalized biochar for energy storage, environmental remediation, catalysis, and sustainable agriculture, aiming to achieve a greener future. The deployment of crop residues as a renewable feedstock for biochar, and their properties, compositions, modification, and functionalization techniques are also discussed. Additionally, the avenues for applying functionalized biochar to achieve a greener future,… More > Graphic Abstract

    Recent Advancements in Biochar Functionalization from Crop Residues for a Green Future

  • Open Access

    ARTICLE

    Surface Modification of Activated Carbon by Nitrogen Doping and KOH Activation for Enhanced Carbon Dioxide Adsorption Performance

    Thanattha Chobsilp1, Alongkot Treetong2, Visittapong Yordsri3, Mattana Santasnachok4,5, Pollawat Charoeythornkhajhornchai6, Jaruvit Sukkasem7, Winadda Wongwiriyapan8, Worawut Muangrat1,5,*

    Journal of Renewable Materials, Vol.13, No.11, pp. 2155-2168, 2025, DOI:10.32604/jrm.2025.02025-0111 - 24 November 2025

    Abstract Nitrogen-doped activated carbon (N-AC) was successfully prepared by KOH-activation and nitrogen doping using ammonia (NH3) heat treatment. Coconut shell-derived activated carbon (AC) was heat-treated under NH3 gas in the temperature range of 700°C–900°C. Likewise, the mixture of potassium hydroxide (KOH) and AC was heated at 800°C, followed by heat treatment under NH3 gas at 800°C (hereafter referred to as KOH-N-AC800). Scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) method were utilized to analyze morphology, crystallinity, chemical bonding, chemical composition and surface area. The surface area and porosity of N-AC increased with increasing… More >

  • Open Access

    ARTICLE

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

    Lailan Ni`mah1,*, Sri Rachmania Juliastuti2, Mahfud Mahfud2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2169-2190, 2025, DOI:10.32604/jrm.2025.02025-0044 - 24 November 2025

    Abstract This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste, an underutilized agricultural byproduct. Microwave-assisted production offers faster heating, lower energy consumption, and better process control compared to conventional methods. It also enhances pore development, resulting in larger, cleaner, and more uniform pores, making the activated carbon more effective for adsorption. The microwave-assisted process significantly accelerates production, reducing the required time to just 10 min at a power of 400 W. Activated carbon derived from lemongrass waste at 400 W exhibits a water absorption capacity of 7.88%, ash content of… More > Graphic Abstract

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

  • Open Access

    PROCEEDINGS

    Experimental Study on the Lubrication Enhancement of Slider-on-Disc Contact by Stearic Acid Adsorption under Limited Lubricant Supply

    Yusheng Jian, Xiujiang Shi*, Xiaoxiao Li, Zehong Cai, Bailing Guan, Xiqun Lu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011085

    Abstract The optimization of the lubricant supply quantity contributes to minimizing energy losses and wastage. Stearic acid is commonly used for boundary lubrication as an organic friction modifier. To enhance the performance of hydrodynamic bearings running with limited lubricant supply (LLS), under conditions of limited oil supply, the effect of stearic acid oiliness additive was studied on the relationship between oil film thickness of PAO10 (polyα-olefin) and inclination angle of the slider with an optical test rig for measuring the film lubrication in the slider-on-disc contact. The results showed that the film thickness presented an overall… More >

  • Open Access

    ARTICLE

    Sustainable Removal of Cu2+ and Pb2+ Ions via Adsorption Using Polyvinyl Alcohol/Neem Leaf Extract/Chitosan (From Shrimp Shells) Composite Films

    Deepti Rekha Sahoo, Trinath Biswal*

    Journal of Polymer Materials, Vol.42, No.3, pp. 811-835, 2025, DOI:10.32604/jpm.2025.067022 - 30 September 2025

    Abstract The purpose of this research work is to determine the removal efficiency of Cu2+ and Pb2+ ions using polyvinyl alcohol/neem leaf extract/chitosan (PVA/NLE/CS) composite films as adsorbent materials from an aqueous medium, with respect to pH, contact time, and adsorbent dosage. The synthesized composite material was characterized using Fourier Transform Infrared (FTIR) spectroscopy, thermogravimetric analysis-Derivative Thermogravimetry (TGA-DTG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX). The antibacterial activity and swelling response of the material were studied using suitable methodologies. The FTIR study confirmed the interactions among PVA, chitosan, and… More >

  • Open Access

    ARTICLE

    Computational Study Analysis of Adsorption Behavior of MgFe2O4-Collagen Hydrogels with Spinal Cord Tissues

    Imandeena Sofileeya1,2, Surajudeen Sikiru1,2,*, Nur Hidayah Shahemi1, Niraj Kumar3, Mohd Muzamir Mahat1,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 713-728, 2025, DOI:10.32604/jpm.2025.065378 - 30 September 2025

    Abstract Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and delicate nature of neural tissue repair. This study aims to design a conductive hydrogel embedded with magnetic MgFe2O4 nanoparticles to establish a bioelectrically active and spatially stable microenvironment that promotes spinal cord regeneration through computational analysis (BIOVIA Materials Studio). Hydrogels, known for their biocompatibility and extracellular matrix-mimicking properties, support essential cellular behaviors such as adhesion, proliferation, and migration. The integration of MgFe2O4 nanoparticles imparts both electrical conductivity and magnetic responsiveness, enabling controlled transmission of electrical signals that are crucial for guiding… More >

  • Open Access

    ARTICLE

    Iron Modified Opuntia ficus-indica Cladode Powder as a Novel Adsorbent for Dyes Molecules

    Mehrzia Krimi1,*, Nabil Nasri1, Alma Jandoubi1, Sami Boufi2, Rached Ben Hassen1

    Journal of Renewable Materials, Vol.13, No.8, pp. 1623-1644, 2025, DOI:10.32604/jrm.2025.02025-0023 - 22 August 2025

    Abstract In this study, Opuntia ficus-indica cladode powder (OFIC), locally sourced from Rabta in Tunis, was utilized as a novel, eco-friendly adsorbent in both raw and iron(III) chloride-modified forms. The presence of iron in the modified material was confirmed by X-ray fluorescence spectroscopy (XRF). The neat and modified biomass were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), and their usefulness as adsorbent for cationic Neutral Red (NR) and anionic Congo Red (CR) dyes were explored under batch conditions. Equilibrium studies revealed that the iron-modified Fe(OH)x@Cellulose adsorbent exhibited… More > Graphic Abstract

    Iron Modified <i>Opuntia ficus-indica</i> Cladode Powder as a Novel Adsorbent for Dyes Molecules

  • Open Access

    ARTICLE

    An Investigation into the Cationic Dye Adsorption Capacity of Prickly Pear Cactus-Derived Cellulose

    Alma Jandoubi, Mehrzia Krimi, Rached Ben Hassen*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1389-1411, 2025, DOI:10.32604/jrm.2025.02025-0022 - 22 July 2025

    Abstract This research aims to investigate the potential of a plant cellulose developed from Opuntia ficus-indica (OFI) cladode as a sustainable and renewable adsorbent for the removal of neutral red (NR), a cationic dye pollutant, from aqueous environments. Analysis of raw and treated OFI using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) demonstrated the successful extraction of type cellulose. The Brunauer–Emmett–Teller (BET) analysis of the nitrogen adsorption-desorption isotherm revealed an improved specific surface area of 12.4 m2/g after treatment. A systematic study of key parameters in batch adsorption experiments revealed removal rates… More > Graphic Abstract

    An Investigation into the Cationic Dye Adsorption Capacity of Prickly Pear Cactus-Derived Cellulose

  • Open Access

    ARTICLE

    Impact of Pyrolysis Parameters on Biochar and Activated Carbon Properties from Cistus ladaniferus for Environmental Applications

    Hammadi El Farissi1,2,*, Anass Choukoud1,2, Bouchaib Manoun3,4, Mohamed El Massaoudi5,6, Abdelmonaem Talhaoui2

    Journal of Renewable Materials, Vol.13, No.6, pp. 1251-1266, 2025, DOI:10.32604/jrm.2025.02025-0004 - 23 June 2025

    Abstract In light of the growing urgency to address environmental degradation and improve carbon sequestration strategies, this study rigorously investigates the potential of Cistus ladaniferus as a viable feedstock for biochar and activated carbon production. The influence of pyrolysis temperature, heating rate and particle size on biochar yield was systematically examined. The results demonstrate that increasing pyrolysis temperature and heating rate significantly reduces biochar yield, while particle size plays a crucial role in thermal degradation and biochar retention. To evaluate the structural and chemical properties of the materials, various characterization techniques were employed, including Fourier-transform infrared spectroscopy… More > Graphic Abstract

    Impact of Pyrolysis Parameters on Biochar and Activated Carbon Properties from <i>Cistus ladaniferus</i> for Environmental Applications

  • Open Access

    REVIEW

    Efficient Application to Remove Arsenic and Antimony from the Water Environment Using Renewable Carbon-Based Materials: A Review

    Tongtong Wang1,#, Zhenhui Pan2,#, Di Zhang2, Hui Shi1,2,*, Murat Yılmaz3, Amit Kumar4, Gaurav Sharma4, Tao Liu2,*

    Journal of Renewable Materials, Vol.13, No.6, pp. 1103-1137, 2025, DOI:10.32604/jrm.2025.02024-0043 - 23 June 2025

    Abstract With the rapid development of industry, the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious. Therefore, it is urgent to solve the problem of arsenic and antimony pollution in the water environment. Renewable carbon-based materials, as a kind of adsorbent widely used in wastewater treatment, have been the focus of scholars’ research for many years. In this review, the preparation methods, characteristics, and applications of renewable carbon-based materials (biochar, activated carbon, carbon nanotubes, and graphene) for the removal of arsenic and antimony are described in detail. Based on adsorption kinetics,… More > Graphic Abstract

    Efficient Application to Remove Arsenic and Antimony from the Water Environment Using Renewable Carbon-Based Materials: A Review

Displaying 1-10 on page 1 of 80. Per Page