Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Preparation of N,S-Doped Biochar via Modulating Chitosan and Sodium Dodecyl Benzene Sulfonate Interaction and Its Adsorption Performance

    Jun-Jie Yang1, Ran An1, Jing-Heng Nie1, Hao-Miao Ma1, Yu-Qing Yan1, Yuan-Ru Guo1,*, Qing-Jiang Pan2,*

    Journal of Renewable Materials, Vol.13, No.5, pp. 885-900, 2025, DOI:10.32604/jrm.2025.02024-0066 - 20 May 2025

    Abstract To achieve the sustainable development and carbon neutral target, biomass chitosan (CS) was used to prepare N,S-doped biochar (NSB) with the assistance of sodium dodecyl benzene sulfonate (SDBS). The synthetic route was developed, which does not require the activation that is frequently-used for active carbon materials. By manipulating their interaction, SDBS was deposited with CS in neutral and basic conditions. Subsequent calcination successfully has access to NSB. It features with hierarchical porous structure and abundant functional groups. The dually-doped NSB bears excellent adsorption performance towards chlortetracycline (CTC). The adsorption capacity reaches 101.3 mg g−1 within 4 More >

  • Open Access

    ARTICLE

    Alkaline Treatment of Straw for Composite Material Production and Its Impact on Water Vapor Adsorption Characteristics

    Martin Böhm*, Miloš Jerman, Martin Keppert, Klára Kobetičová, Dana Koňáková, Milena Pavlíková, Robert Černý

    Journal of Renewable Materials, Vol.13, No.2, pp. 363-383, 2025, DOI:10.32604/jrm.2024.056984 - 20 February 2025

    Abstract The effect of using 2% and 10% sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity (RH) range of 0% to 98%. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR) are used to investigate the morphological, chemical and structural changes of the treated straw surface. The mineral particles formed on the surface after the treatment are analyzed using X-ray diffraction (XRD). The application of sodium hydroxide solution results in the disruption of the straw surface. As the concentration More > Graphic Abstract

    Alkaline Treatment of Straw for Composite Material Production and Its Impact on Water Vapor Adsorption Characteristics

  • Open Access

    ARTICLE

    Experimental Study of Selective Batch Bio-Adsorption for the Removal of Dyes in Industrial Textile Effluents

    Zakaria Laggoun1,*, Amel Khalfaoui1, Kerroum Derbal2,*, Amira Fadia Ghomrani3, Abderrezzaq Benalia2,4, Antonio Pizzi5

    Journal of Renewable Materials, Vol.13, No.1, pp. 127-146, 2025, DOI:10.32604/jrm.2024.056970 - 20 January 2025

    Abstract This research aims to study the bio-adsorption process of two dyes, Cibacron Green H3G (CG-H3G) and Terasil Red (TR), in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes (TR+CG-H3G). The Cockle Shell (CS) was used as a natural bio-adsorbent. The characterizations of CS were investigated by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and Brunauer–Emmett–Teller (BET). The adsorption potential of Cockle Shells was tested in two cases (single and binary system) and determined by: contact… More > Graphic Abstract

    Experimental Study of Selective Batch Bio-Adsorption for the Removal of Dyes in Industrial Textile Effluents

  • Open Access

    ARTICLE

    Optimization of Phosphate Adsorption Using Activated Carbon Derived from Pangium edule Shell

    Rachmannu Ilham1, Fataty Kurnia Rahmah1, Nurul Faradilah Said2, Mohamad Buang Budiono2, Suprapto Suprapto1,*

    Journal of Renewable Materials, Vol.12, No.11, pp. 1895-1909, 2024, DOI:10.32604/jrm.2024.055602 - 22 November 2024

    Abstract This study investigated the efficiency of activated carbon from Pangium edule shells for removing phosphate from aqueous solution. The adsorption capacity of the synthesized activated carbon was determined to be 19.8392 mg g−1. Various isotherm models were used to analyze the adsorption process, Henry, Freundlich, SIP, and Halsey isotherm fitting showed r2 values close to 1.0. These isotherms indicated a combination of physisorption and chemisorption mechanisms, with heterogeneity and multilayer formation playing important roles. A pseudo-second-order model described the adsorption kinetics well, suggesting chemisorption as the dominant mechanism with an r2 value of 1.0 and a rate constant… More >

  • Open Access

    PROCEEDINGS

    Fast and Accurate Calculation on Competitive Adsorption Behavior in Shale Nanopores by Machine Learning Model

    Hao Yu1,*, Mengcheng Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011120

    Abstract Understanding the competitive adsorption behavior of CO2 and CH4 in shale nanopores is crucial for enhancing the recovery of shale gas and sequestration of CO2, which is determined by both the inherent characteristics of the molecules and external environmental factors such as pore size, temperature, and partial pressures of CO2 and CH4. While the competitive adsorption behavior of CO2/CH4 has been analyzed by previous studies, a comprehensive understanding from the perspective of molecular kinetic theory and the efficient calculation for competitive adsorption behavior considering various geological situations is still challenging, limited by the huge computation cost of classical… More >

  • Open Access

    ARTICLE

    Modeling of the Adsorption Allowing for the Changing Adsorbent Activity at Various Stages of the Process

    Marat Satayev1,2,*, Abdugani Azimov2, Arnold Brener2, Nina Alekseyeva1, Zulfia Shakiryanova2

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1533-1558, 2024, DOI:10.32604/fhmt.2024.052901 - 30 October 2024

    Abstract The goal of this work is, first of all, to construct a mathematical model of the mass transfer process in porous adsorption layers, taking into account the fact that in most cases the adsorption process is carried out in non-stationary technological modes, which requires a clear description of its various stages. The scientific contribution of the novel model is based on a probability approach allowing for deriving a differential equation that takes into account the diffusion migration of adsorbed particles. Solving this equation allows us to calculate the reduced degree of the adsorption surface coverage… More >

  • Open Access

    ARTICLE

    Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes

    Heru Suryanto1,2,*, Daimon Syukri3, Fredy Kurniawan4, Uun Yanuhar5, Joseph Selvi Binoj6, Sahrul Efendi2, Fajar Nusantara2, Jibril Maulana7, Nico Rahman Caesar5, Komarudin Komarudin2

    Journal of Renewable Materials, Vol.12, No.9, pp. 1605-1624, 2024, DOI:10.32604/jrm.2024.054047 - 25 September 2024

    Abstract Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences. The current study aims to utilize pineapple biowaste extract in producing bacterial cellulose acetate-based membranes with magnetic nanoparticles (Fe3O4 nanoparticles) through the fermentation and esterification process and explore its characteristics. The bacterial cellulose fibrillation used a high-pressure homogenization procedure, and membranes were developed incorporating 0.25, 0.50, 0.75, and 1.0 wt.% of Fe3O4 nanoparticles as magnetic nanoparticle for functionalization. The membrane characteristics were measured in terms of Scanning Electron Microscope, X-ray diffraction, Fourier Transform Infrared, Vibrating Sample Magnetometer, antibacterial activity, bacterial… More > Graphic Abstract

    Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes

  • Open Access

    ARTICLE

    Removal of Dye Using Lignin-Based Biochar/Poly(ester amide urethane) Nanocomposites from Contaminated Wastewater

    Annesha Kar1, Niranjan Karak1,2,*

    Journal of Renewable Materials, Vol.12, No.9, pp. 1507-1540, 2024, DOI:10.32604/jrm.2024.052220 - 25 September 2024

    Abstract The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials. The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies. Among the various sorbent materials explored, biochar, being renewable, has gained prominence due to its excellent adsorption properties and environmental sustainability. It has also emerged as a focal point for its potential to replace other conventional reinforcing agents, viz., fumed silica, aluminum oxide, treated clays, etc. This study introduces a novel class of… More > Graphic Abstract

    Removal of Dye Using Lignin-Based Biochar/Poly(ester amide urethane) Nanocomposites from Contaminated Wastewater

  • Open Access

    ARTICLE

    The Adsorption Properties of TEMPO Oxidized Cellulose against the Mixture of Methylene Blue and Rhemazol Yellow FG

    I. Putu Mahendra*, Kartika Dinita

    Journal of Renewable Materials, Vol.12, No.8, pp. 1369-1382, 2024, DOI:10.32604/jrm.2024.053001 - 06 September 2024

    Abstract TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface. Two concentrations of NaOCl, 5 and 30 mmol/g of cellulose, were used in this study. The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose, respectively. The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity, at 81.15% and 80.14%, respectively, compared to untreated cellulose, which had a crystallinity of 75.95%. The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions… More > Graphic Abstract

    The Adsorption Properties of TEMPO Oxidized Cellulose against the Mixture of Methylene Blue and Rhemazol Yellow FG

  • Open Access

    ARTICLE

    Molecular Dynamics Numerical Simulation of Adsorption Characteristics and Exploitation Limits in Shale Oil Microscopic Pore Spaces

    Guochen Xu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1915-1924, 2024, DOI:10.32604/fdmp.2024.048337 - 06 August 2024

    Abstract Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures. The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and chemical properties. Therefore, studying the adsorption morphology of hydrocarbon components in nanometer-sized pores and clarifying the exploitation limits of shale oil at the microscopic level are of great practical significance for the efficient development of continental shale oil. In this study, molecular dynamics simulations were employed to investigate the adsorption characteristics of various single-component shale oils in inorganic quartz fissures, and the influence of pore… More >

Displaying 1-10 on page 1 of 70. Per Page