Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    Aluminum Alloy Fatigue Crack Damage Prediction Based on Lamb Wave-Systematic Resampling Particle Filter Method

    Gaozheng Zhao1, Changchao Liu1, Lingyu Sun1, Ning Yang2, Lei Zhang1, Mingshun Jiang1, Lei Jia1, Qingmei Sui1,*

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 81-96, 2022, DOI:10.32604/sdhm.2022.016905

    Abstract Fatigue crack prediction is a critical aspect of prognostics and health management research. The particle filter algorithm based on Lamb wave is a potential tool to solve the nonlinear and non-Gaussian problems on fatigue growth, and it is widely used to predict the state of fatigue crack. This paper proposes a method of lamb wave-based early fatigue microcrack prediction with the aid of particle filters. With this method, which the changes in signal characteristics under different fatigue crack lengths are analyzed, and the state- and observation-equations of crack extension are established. Furthermore, an experiment is conducted to verify the feasibility… More >

  • Open Access

    ARTICLE

    Genome-wide identification, characterization, and expression analysis of aluminum-activated malate transporter genes (ALMTs) in Gossypium hirsutum L.

    QUANWEI LU1,2,#, YUZHEN SHI2,#, RUILI CHEN1,2, XIANGHUI XIAO2,3, PENGTAO LI1,2, JUWU GONG2,3, RENHAI PENG1, YOULU YUAN2,*

    BIOCELL, Vol.46, No.5, pp. 1347-1356, 2022, DOI:10.32604/biocell.2022.018254

    Abstract Aluminum-activated malate transporters (ALMT) are widely involved in plant growth and metabolic processes, including adaptation to acid soils, guard cell regulation, anion homeostasis, and seed development. Although ALMT genes have been identified in Arabidopsis, wheat, barley, and Lotus japonicus, little is known about its presence in Gossypium hirsutum L. In this study, ALMT gene recognition in diploid and tetraploid cotton were done using bioinformatics analysis that examined correlation between homology and evolution. Differentially regulated ALMT genetic profile in G. hirsutum was examined, using RNA sequencing and qRT-PCR, during six fiber developmental time-points, namely 5 d, 7 d, 10 d, 15… More >

  • Open Access

    ARTICLE

    A Study on the Relationship between Anodic Oxidation and the Thermal Load on the Aluminum Alloy Piston of a Gasoline Engine

    Huali Guo*, Yi Liang, Zhilong Zhang, Yuanhua Chen

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 57-70, 2022, DOI:10.32604/fdmp.2022.017989

    Abstract In order to analyze the influence of the anodizing process on the thermal load of an aluminum alloy piston, dedicated temperature tests have been carried out using the Hardness Plug method and the results for the anodized piston have been compared with those obtained separately for an original aluminum piston. In addition, numerical simulations have been conducted to analyze the temperature field and thermal stress distribution. Simulations and experiments show that the maximum temperature of the anodized piston is 16.36% and 5.4% smaller than that of the original piston under the condition of maximum torque and maximum power, respectively. The… More >

  • Open Access

    ARTICLE

    Simulating the Effect of Temperature Gradient on Grain Growth of 6061-T6 Aluminum Alloy via Monte Carlo Potts Algorithm

    Qi Wu*, Jianan Li, Lianchun Long, Linao Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 99-116, 2021, DOI:10.32604/cmes.2021.015669

    Abstract During heat treatment or mechanical processing, most polycrystalline materials experience grain growth, which significantly affects their mechanical properties. Microstructure simulation on a mesoscopic scale is an important way of studying grain growth. A key research focus of this type of method has long been how to efficiently and accurately simulate the grain growth caused by a non-uniform temperature field with temperature gradients. In this work, we propose an improved 3D Monte Carlo Potts (MCP) method to quantitatively study the relationship between non-uniform temperature fields and final grain morphologies. Properties of the aluminum alloy AA6061-T6 are used to establish a trial… More >

  • Open Access

    ARTICLE

    Corrosion Protection of 5083 AA in Saline Water by Polyacrylonitrile Nanofibers

    Enas H. Ali, Juman A. Naser*, Zainab W. Ahmed, Taki A. Himdan

    Journal of Renewable Materials, Vol.9, No.11, pp. 1927-1939, 2021, DOI:10.32604/jrm.2021.015624

    Abstract Polymeric nanofibers are a promising technology to protect the metal surfaces from corrosion. Through the literature search, the use of polyacrylonitrile nanofibres (PANNFs) as a corrosion inhibitor coating for aluminum alloys has not been evaluated. This work includes the development of a new, lightweight, high surface area and efficient coating of PANNFs that produced using electrospinning process to resist the corrosion of aluminum alloys (AA5083) which immersed in 0.6 M NaCl at alkaline medium (pH = 12) and acidic medium (pH = 1) at a range of temperatures (293–323) K. The PANNFs coating was successfully deposited on AA 5083 specimens,… More >

  • Open Access

    ARTICLE

    Pore Structure Characteristics of Baking-Free Slag-Sludge Bricks and Its Correlations to Mechanical Properties

    Lei Guo1,2,3,4, Pingping Chen1, Lixia Guo1,2,3,*, Zhilong Xue4, Zi Guan1, Mingru Li1

    Journal of Renewable Materials, Vol.9, No.10, pp. 1805-1819, 2021, DOI:10.32604/jrm.2021.015140

    Abstract In order to explore the relationship between the macroscopic properties and pore structure characteristics of baking-free slag-sludge bricks, the compressive strength and water absorption rate using aluminum industrial slag and sludge of different substitution rates were tested. Optical instruments and image analysis software were used to measure the parameters of the pore structure. Specifically, a fractal model was built based on the fractal theory, in which the fractal dimension was used as the characteristic index of the pore structure to analyze the correlation and interaction mechanism between the fractal dimension and the macroscopic mechanical properties. Based on this study, conclusions… More >

  • Open Access

    ARTICLE

    Improving the Morphological Parameters of Aluminum Foam for Maximum Sound Absorption Coefficient using Genetic Algorithm

    Mohammad Javad Jafari1, Mohsen Niknam Sharak2, Ali Khavanin3, Touraj Ebadzadeh4, Mahmood Fazlali5, Rohollah Fallah Madvari6,*

    Sound & Vibration, Vol.55, No.2, pp. 117-130, 2021, DOI:10.32604/sv.2021.09729

    Abstract Fabricating of metal foams with desired morphological parameters including pore size, porosity and pore opening is possible now using sintering technology. Thus, if it is possible to determine the morphology of metal foam to absorb sound at a given frequency, and then fabricate it through sintering, it is expected to have optimized metal foams for the best sound absorption. Theoretical sound absorption models such as Lu model describe the relationship between morphological parameters and the sound absorption coefficient. In this study, the Lu model was used to optimize the morphological parameters of Aluminum metal foam for the best sound absorption… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Lime-Fly Ash-Sulphate Aluminum Cement Stabilized Loess

    Liang Jia, Chunxiang Li, Jian Guo*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1357-1373, 2020, DOI:10.32604/jrm.2020.012136

    Abstract Lime-fly ash stabilized loess has a poor early strength, which results in a later traffic opening time when it is used as road-base materials. Consideration of the significant early strength characteristics of sulphate aluminum cement (SAC), it is always added into the lime-fly ash mixtures to improve the early strength of stabilized loess. However, there is a scarcity of research on the mechanical behavior of lime-fly ash-SAC stabilized loess and there is a lack of quantitative evaluation of loess stabilized with binder materials. This research explored the effects of the amount of binder materials, curing time and porosity on the… More >

  • Open Access

    ARTICLE

    Effect Mechanisms of Hygrothermal Environments on Failure of Single-Lap and Double-Lap CFRP-Aluminum Bolted Joints

    Meijuan Shan1, 2, Libin Zhao2, *, Wei Huang3, Fengrui Liu2, Jianyu Zhang4, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 101-127, 2020, DOI:10.32604/cmes.2020.09099

    Abstract The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments. However, few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints, which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals. In this paper, hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated. A novel numerical model, in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models… More >

  • Open Access

    ARTICLE

    Atomistic Modeling of Spall Response in a Single Crystal Aluminum

    R. R. Valisetty1, A. M. Dongare2, A. M. Rajendran3, R. R. Namburu1

    CMC-Computers, Materials & Continua, Vol.44, No.1, pp. 23-57, 2014, DOI:10.3970/cmc.2014.044.023

    Abstract Materials used in soldier protective structures, such as armor, vehicles and civil infrastructures, are being improved for performance in extreme dynamic environments. Accordingly, atomistic molecular dynamics simulations were performed to study the spall response in a single crystal aluminum atom system. A planar 9.6 picoseconds (ps) shock pulse was generated through impacts with a shock piston at velocities ranging from 0.6 km/s to 1.5 km/s in three <1,0,0>, <1,1,0>, and <1,1,1> crystal orientations. In addition to characterizing the transient spall region width and duration, the spall response was characterized interms of the traditional axial stress vs. axial strain response for… More >

Displaying 21-30 on page 3 of 56. Per Page