Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (74)
  • Open Access

    ARTICLE

    Silicon Mitigates Aluminum Toxicity of Tartary Buckwheat by Regulating Antioxidant Systems

    Anyin Qi1,#, Xiaonan Yan1,#, Yuqing Liu1,#, Qingchen Zeng1, Hang Yuan1, Huange Huang1, Chenggang Liang2, Dabing Xiang1, Liang Zou1, Lianxin Peng1, Gang Zhao1, Jingwei Huang1,*, Yan Wan1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.1, pp. 1-13, 2024, DOI:10.32604/phyton.2023.045802 - 26 January 2024

    Abstract

    Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheat growing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growth of tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated in many crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, and root volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At the same time, catalase (CAT)

    More >

  • Open Access

    ARTICLE

    Machine Learning Design of Aluminum-Lithium Alloys with High Strength

    Hongxia Wang1,2, Zhiqiang Duan2, Qingwei Guo2, Yongmei Zhang1,2,*, Yuhong Zhao2,3,4,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1393-1409, 2023, DOI:10.32604/cmc.2023.045871 - 29 November 2023

    Abstract Due to the large unexplored compositional space, long development cycle, and high cost of traditional trial-anderror experiments, designing high strength aluminum-lithium alloys is a great challenge. This work establishes a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten the development cycle. The calculation results indicate that radial basis function (RBF) neural networks exhibit better predictive ability than back propagation (BP) neural networks. The RBF neural network predicted tensile and yield strengths with determination coefficients of 0.90 and 0.96, root mean square errors of 30.68 and 25.30, and mean absolute errors of More >

  • Open Access

    ARTICLE

    Impact Damage Identification of Aluminum Alloy Reinforced Plate Based on GWO-ELM Algorithm

    Wei Li1,2, Benjian Zou1, Yuxiang Luo2, Ning Yang2, Faye Zhang1,*, Mingshun Jiang1, Lei Jia1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 485-500, 2023, DOI:10.32604/sdhm.2023.025989 - 17 November 2023

    Abstract As a critical structure of aerospace equipment, aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system. In this study, a GWO-ELM algorithm-based impact damage identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage condition of such stiffened panels of spacecraft. Firstly, together with numerical simulation, the experimental simulation to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed, to establish the damage data. Subsequently, the amplitude-frequency characteristics of impact damage signals are extracted and put… More >

  • Open Access

    PROCEEDINGS

    Understanding the Micromechanical Behaviors of Particle-Reinforced Al Composite by Nonlocal Crystal Plasticity Modeling

    Haiming Zhang1,2,*, Shilin Zhao1,2, Zhenshan Cui1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08884

    Abstract Particle-reinforced aluminum matrix composites (PRAMCs) have great potential for application in aerospace, automobile, defense, and electronics due to their high specific strength and stiffness and good resistance to wear and corrosion. Achieving a superior trade-off between the strength and ductility of PRAMCs necessitates an elaborative control of the microstructures, like the size and distribution of particles, as well as grain size, morphology, and texture of the matrix. The multiscale interaction between the particles and the matrix’s microstructure is insufficiently understood due to the lagging of high-resolved in-situ characterization. This work proposes a nonlocal physically based… More >

  • Open Access

    ARTICLE

    Research of Microstructure, Phase, and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics

    Liang Yu1,2,3, Yuan Liu1,2,3, Xiuling Cao4,*, Yulong Yan1,2,3, Chen Zhang1,2,3, Yanli Jiang1,2,3,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 3057-3072, 2023, DOI:10.32604/jrm.2023.025732 - 05 June 2023

    Abstract In this study, the effect of sintering temperature and the addition of kaolin, a sintering agent, on the microscopic, phase, and mechanical properties of ceramics were investigated using secondary aluminum dross (SAD) as the main component in the manufacturing of ceramics. The basic phases of the ceramics were Al2O3, MgAl2O4, NaAl11O17, and SiO2 without the addition of kaolin. The diffraction peaks of MgAl2O4, NaAl11O17, and SiO2 kept decreasing while those of Al2O3 kept increasing with an increase in temperature. In addition, the increase in temperature promoted the growth of the grains. The grains were uniform in size and regular… More > Graphic Abstract

    Research of Microstructure, Phase, and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics

  • Open Access

    ARTICLE

    Low-Temperature Synthesis of Nano-AlN Based on Solid Nitrogen Source by Plasma-Assisted Ball Milling

    Zhuoli Yang1, Xianbin Hou2, Leyang Dai2,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2941-2951, 2023, DOI:10.32604/jrm.2023.025723 - 27 April 2023

    Abstract Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C4H4N4 system, respectively. The phase structure, functional groups and synthesis mechanism were analyzed by XRD and FT-IR, and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed. The results show that C3H6N6 has a stable triazine ring structure, and its chemical bond is firm and difficult to break, so AlN cannot be synthesized directly by solid-solid reaction at room temperature. However, there are a large number of nitrile groups (-CN) and amino groups (-NH2) in C4H4N4 molecules. Under the combined… More >

  • Open Access

    ARTICLE

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

    Mustafa Sami Abdullatef*, Faten N. Alzubaidi, Anees Al-Tamimi, Yasser Ahmed Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2083-2107, 2023, DOI:10.32604/fdmp.2023.027266 - 04 April 2023

    Abstract The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure. The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios (). Artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support-vector machines (SVM), a random forest model (RF), and an extreme-gradient tree-boosting model (XGB) are trained using numerical and experimental input… More > Graphic Abstract

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

  • Open Access

    REVIEW

    A Review of Research on Galvanic Corrosion of Aluminum Alloys

    Huixin Zhu, Mingzhe Leng*, Guofeng Jin*, Heyang Miao

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1907-1923, 2023, DOI:10.32604/fdmp.2023.025416 - 08 March 2023

    Abstract When aluminum alloys are coupled with dissimilar materials, they often act as corrosion anodes and are suscepted to accelerated corrosion. Therefore, deepening our knowledge of such corrosion phenomena, related mechanisms, and elaborating new prediction model is of great theoretical and practical significance. In this paper, such mechanisms are explained from both macroscopic and microscopic points of view by considering several aspects such as the second phase particle type, grain size, and environmental ions. More specifically, different perspectives on such a problem are elaborated, which take into account: the properties of the coupling pair materials, geometrical… More >

  • Open Access

    REVIEW

    Recent Progress of Fabrication, Characterization, and Applications of Anodic Aluminum Oxide (AAO) Membrane: A Review

    Saher Manzoor1, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Imran Tariq3,*, M. Khalid Hossain4

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1007-1052, 2023, DOI:10.32604/cmes.2022.022093 - 27 October 2022

    Abstract The progress of membrane technology with the development of membranes with controlled parameters led to porous membranes. These membranes can be formed using different methods and have numerous applications in science and technology. Anodization of aluminum in this aspect is an electro-synthetic process that changes the surface of the metal through oxidation to deliver an anodic oxide layer. This process results in a self-coordinated, exceptional cluster of round and hollow formed pores with controllable pore widths, periodicity, and thickness. Categorization in barrier type and porous type films, and different methods for the preparation of membranes,… More > Graphic Abstract

    Recent Progress of Fabrication, Characterization, and Applications of Anodic Aluminum Oxide (AAO) Membrane: A Review

  • Open Access

    ARTICLE

    DC-Link Capacitor Optimization in AC–DC Converter by Load Current Prediction

    V. V. Nijil*, P. Selvan

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1043-1062, 2023, DOI:10.32604/iasc.2023.028028 - 29 September 2022

    Abstract Alternating Current–Direct Current (AC–DC) converters require a high value bulk capacitor or a filter capacitor between the DC–DC conversion stages, which in turn causes many problems in the design of a AC–DC converter. The component package size for this capacitor is large due to its high voltage rating and capacitance value. In addition, the high charging current creates more problems during the product compliance testing phase. The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors (MLCC), which limits its use for the highly reliable applications. This paper presents… More >

Displaying 21-30 on page 3 of 74. Per Page