Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (159)
  • Open Access

    ARTICLE

    Anomaly Detection Based on Discrete Wavelet Transformation for Insider Threat Classification

    Dong-Wook Kim1, Gun-Yoon Shin1, Myung-Mook Han2,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 153-164, 2023, DOI:10.32604/csse.2023.034589 - 20 January 2023

    Abstract Unlike external attacks, insider threats arise from legitimate users who belong to the organization. These individuals may be a potential threat for hostile behavior depending on their motives. For insider detection, many intrusion detection systems learn and prevent known scenarios, but because malicious behavior has similar patterns to normal behavior, in reality, these systems can be evaded. Furthermore, because insider threats share a feature space similar to normal behavior, identifying them by detecting anomalies has limitations. This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete… More >

  • Open Access

    ARTICLE

    Logformer: Cascaded Transformer for System Log Anomaly Detection

    Feilu Hang1, Wei Guo1, Hexiong Chen1, Linjiang Xie1, Chenghao Zhou2,*, Yao Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 517-529, 2023, DOI:10.32604/cmes.2023.025774 - 05 January 2023

    Abstract Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status and key events at key points. These logs are valuable for analyzing performance issues and understanding the status of the system. Anomaly detection plays an important role in service management and system maintenance, and guarantees the reliability and security of online systems. Logs are universal semi-structured data, which causes difficulties for traditional manual detection and pattern-matching algorithms. While some deep learning algorithms utilize neural networks to detect anomalies, these approaches have an over-reliance on manually designed features, resulting in the… More >

  • Open Access

    ARTICLE

    Data-Driven Approach for Condition Monitoring and Improving Power Output of Photovoltaic Systems

    Nebras M. Sobahi1,*, Ahteshamul Haque2, V S Bharath Kurukuru2, Md. Mottahir Alam1, Asif Irshad Khan3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5757-5776, 2023, DOI:10.32604/cmc.2022.028340 - 28 December 2022

    Abstract Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic (PV) systems. In light of this requirement, this paper provides a path for evaluating the operating condition and improving the power output of the PV system in a grid integrated environment. To achieve this, different types of faults in grid-connected PV systems (GCPVs) and their impact on the energy loss associated with the electrical network are analyzed. A data-driven approach using neural networks (NNs) is proposed to achieve root cause analysis and localize the fault to the… More >

  • Open Access

    ARTICLE

    Explainable Anomaly Detection Using Vision Transformer Based SVDD

    Ji-Won Baek1, Kyungyong Chung2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6573-6586, 2023, DOI:10.32604/cmc.2023.035246 - 28 December 2022

    Abstract Explainable AI extracts a variety of patterns of data in the learning process and draws hidden information through the discovery of semantic relationships. It is possible to offer the explainable basis of decision-making for inference results. Through the causality of risk factors that have an ambiguous association in big medical data, it is possible to increase transparency and reliability of explainable decision-making that helps to diagnose disease status. In addition, the technique makes it possible to accurately predict disease risk for anomaly detection. Vision transformer for anomaly detection from image data makes classification through MLP.… More >

  • Open Access

    ARTICLE

    Identification of Anomaly Scenes in Videos Using Graph Neural Networks

    Khalid Masood1, Mahmoud M. Al-Sakhnini2,3, Waqas Nawaz4,*, Tauqeer Faiz5,6, Abdul Salam Mohammad7, Hamza Kashif8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5417-5430, 2023, DOI:10.32604/cmc.2023.033590 - 28 December 2022

    Abstract Generally, conventional methods for anomaly detection rely on clustering, proximity, or classification. With the massive growth in surveillance videos, outliers or anomalies find ingenious ways to obscure themselves in the network and make conventional techniques inefficient. This research explores the structure of Graph neural networks (GNNs) that generalize deep learning frameworks to graph-structured data. Every node in the graph structure is labeled and anomalies, represented by unlabeled nodes, are predicted by performing random walks on the node-based graph structures. Due to their strong learning abilities, GNNs gained popularity in various domains such as natural language… More >

  • Open Access

    ARTICLE

    Performance Analysis of Hybrid RR Algorithm for Anomaly Detection in Streaming Data

    L. Amudha1,*, R. PushpaLakshmi2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2299-2312, 2023, DOI:10.32604/csse.2023.031169 - 21 December 2022

    Abstract Automated live video stream analytics has been extensively researched in recent times. Most of the traditional methods for video anomaly detection is supervised and use a single classifier to identify an anomaly in a frame. We propose a 3-stage ensemble-based unsupervised deep reinforcement algorithm with an underlying Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). In the first stage, an ensemble of LSTM-RNNs are deployed to generate the anomaly score. The second stage uses the least square method for optimal anomaly score generation. The third stage adopts award-based reinforcement learning to update the… More >

  • Open Access

    ARTICLE

    Residual Attention Deep SVDD for COVID-19 Diagnosis Using CT Scans

    Akram Ali Alhadad1,2,*, Omar Tarawneh3, Reham R. Mostafa1, Hazem M. El-Bakry1

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3333-3350, 2023, DOI:10.32604/cmc.2023.033413 - 31 October 2022

    Abstract COVID-19 is the common name of the disease caused by the novel coronavirus (2019-nCoV) that appeared in Wuhan, China in 2019. Discovering the infected people is the most important factor in the fight against the disease. The gold-standard test to diagnose COVID-19 is polymerase chain reaction (PCR), but it takes 5–6 h and, in the early stages of infection, may produce false-negative results. Examining Computed Tomography (CT) images to diagnose patients infected with COVID-19 has become an urgent necessity. In this study, we propose a residual attention deep support vector data description SVDD (RADSVDD) approach… More >

  • Open Access

    ARTICLE

    Log Anomaly Detection Based on Hierarchical Graph Neural Network and Label Contrastive Coding

    Yong Fang, Zhiying Zhao, Yijia Xu*, Zhonglin Liu

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4099-4118, 2023, DOI:10.32604/cmc.2023.033124 - 31 October 2022

    Abstract System logs are essential for detecting anomalies, querying faults, and tracing attacks. Because of the time-consuming and labor-intensive nature of manual system troubleshooting and anomaly detection, it cannot meet the actual needs. The implementation of automated log anomaly detection is a topic that demands urgent research. However, the prior work on processing log data is mainly one-dimensional and cannot profoundly learn the complex associations in log data. Meanwhile, there is a lack of attention to the utilization of log labels and usually relies on a large number of labels for detection. This paper proposes a… More >

  • Open Access

    ARTICLE

    Anomaly Detection in Social Media Texts Using Optimal Convolutional Neural Network

    Swarna Sudha Muppudathi1, Valarmathi Krishnasamy2,*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1027-1042, 2023, DOI:10.32604/iasc.2023.031165 - 29 September 2022

    Abstract Social Networking Sites (SNSs) are nowadays utilized by the whole world to share ideas, images, and valuable contents by means of a post to reach a group of users. The use of SNS often inflicts the physical and the mental health of the people. Nowadays, researchers often focus on identifying the illegal behaviors in the SNS to reduce its negative influence. The state-of-art Natural Language processing techniques for anomaly detection have utilized a wide annotated corpus to identify the anomalies and they are often time-consuming as well as certainly do not guarantee maximum accuracy. To overcome… More >

  • Open Access

    REVIEW

    Intelligent Identification over Power Big Data: Opportunities, Solutions, and Challenges

    Liang Luo1, Xingmei Li1, Kaijiang Yang1, Mengyang Wei1, Jiong Chen1, Junqian Yang1, Liang Yao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1565-1595, 2023, DOI:10.32604/cmes.2022.021198 - 20 September 2022

    Abstract The emergence of power dispatching automation systems has greatly improved the efficiency of power industry operations and promoted the rapid development of the power industry. However, with the convergence and increase in power data flow, the data dispatching network and the main station dispatching automation system have encountered substantial pressure. Therefore, the method of online data resolution and rapid problem identification of dispatching automation systems has been widely investigated. In this paper, we perform a comprehensive review of automated dispatching of massive dispatching data from the perspective of intelligent identification, discuss unresolved research issues and More >

Displaying 91-100 on page 10 of 159. Per Page