Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (118)
  • Open Access

    ARTICLE

    Design and Analysis of Antipodal Vivaldi Antennas for Breast Cancer Detection

    Shalermchon Tangwachirapan, Wanwisa Thaiwirot*, Prayoot Akkaraekthalin

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 411-431, 2022, DOI:10.32604/cmc.2022.028294 - 18 May 2022

    Abstract This paper presents the design and analysis of antipodal Vivaldi antennas (AVAs) for breast cancer detection. In order to enhance the antenna gain, different techniques such as using the uniform and non-uniform corrugation, expanding the dielectric substrate and adding the parasitic patch are applied to original AVA. The design procedure of two developed AVA structures i.e., AVA with non-uniform corrugation and AVA with parasitic patch are presented. The proposed AVAs are designed on inexpensive FR4 substrate. The AVA with non-uniform corrugation has compact dimension of mm2 or , where is wavelength of the lowest operating frequency.… More >

  • Open Access

    ARTICLE

    Optimized Two-Level Ensemble Model for Predicting the Parameters of Metamaterial Antenna

    Abdelaziz A. Abdelhamid1,3,*, Sultan R. Alotaibi2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 917-933, 2022, DOI:10.32604/cmc.2022.027653 - 18 May 2022

    Abstract Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools. In this paper, we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model. The proposed ensemble model is composed of two levels of regression models. The first level consists of three strong models namely, random forest, support vector regression, and light gradient boosting machine. Whereas the second level is based on the ElasticNet regression model, which… More >

  • Open Access

    ARTICLE

    A Compact Quad-Band Sickle-Shaped Monopole Antenna for GSM 900/WiMax/WLAN Applications

    Sujit Goswami1,*, Sujit Kumar Mandal1, Soumen Banerjee2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 397-410, 2022, DOI:10.32604/cmc.2022.025657 - 18 May 2022

    Abstract In this paper a novel, compact, microstrip-fed, quad-band monopole antenna is presented for the application of Global System for Mobile communication (GSM 900), Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). The proposed antenna comprises of a sickle-shaped structure with four circular arc strips, and a modified rectangular ground plane. The four strips of the antenna are independently responsible for the four different resonant frequencies of the operating bands and can be tuned separately to control the radiation performance. The proposed quad-band antenna is designed to resonate at 940 MHz for GSM More >

  • Open Access

    ARTICLE

    Compact Interlaced Dual Circularly Polarized Sequentially Rotated Dielectric-Resonator Antenna Array

    Yazeed Qasaymeh*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4631-4643, 2022, DOI:10.32604/cmc.2022.026111 - 21 April 2022

    Abstract In this study, a compact 2 × 2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications. The array is composed of a novel unit elements that are made of rectangular dielectric resonator (RDR) coupled to an eye slot for generating the orthogonal modes, and to acquire circular polarization (CP) radiation. For the purpose of miniaturization and achieving dual polarized resonance, the array is fed by two interlaced ports and each port excites two radiating elements. The first port feeds horizontal elements to obtain left hand circular polarization (LHCP). The second port feeds vertical… More >

  • Open Access

    ARTICLE

    A New Fuzzy Controlled Antenna Network Proposal for Small Satellite Applications

    Chafaa Hamrouni1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4233-4248, 2022, DOI:10.32604/cmc.2022.023453 - 21 April 2022

    Abstract This research contributes to small satellite system development based on electromagnetic modeling and an integrated meta-materials antenna networks design for multimedia transmission contents. It includes an adaptive nonsingular mode tracking control design for small satellites systems using fuzzy waveless antenna networks. By analyzing and modeling based on electromagnetic methods, propagation properties of guided waves from metallic structures with simple or complex forms charge partially or entirely by anisotropic materials such as metamaterials. We propose a system control rule to omit uncertainties, including the inevitable approximation errors resulting from the finite number of fuzzy signal power… More >

  • Open Access

    ARTICLE

    An Efficient Video Inpainting Approach Using Deep Belief Network

    M. Nuthal Srinivasan1,*, M. Chinnadurai2

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 515-529, 2022, DOI:10.32604/csse.2022.023109 - 20 April 2022

    Abstract The video inpainting process helps in several video editing and restoration processes like unwanted object removal, scratch or damage rebuilding, and retargeting. It intends to fill spatio-temporal holes with reasonable content in the video. Inspite of the recent advancements of deep learning for image inpainting, it is challenging to outspread the techniques into the videos owing to the extra time dimensions. In this view, this paper presents an efficient video inpainting approach using beetle antenna search with deep belief network (VIA-BASDBN). The proposed VIA-BASDBN technique initially converts the videos into a set of frames and… More >

  • Open Access

    ARTICLE

    Robust Prediction of the Bandwidth of Metamaterial Antenna Using Deep Learning

    Abdelaziz A. Abdelhamid1,3,*, Sultan R. Alotaibi2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2305-2321, 2022, DOI:10.32604/cmc.2022.025739 - 29 March 2022

    Abstract The design of microstrip antennas is a complex and time-consuming process, especially the step of searching for the best design parameters. Meanwhile, the performance of microstrip antennas can be improved using metamaterial, which results in a new class of antennas called metamaterial antenna. Several parameters affect the radiation loss and quality factor of this class of antennas, such as the antenna size. Recently, the optimal values of the design parameters of metamaterial antennas can be predicted using machine learning, which presents a better alternative to simulation tools and trial-and-error processes. However, the prediction accuracy depends… More >

  • Open Access

    ARTICLE

    Linearly Polarized Millimeter Wave Reflectarray with Mutual Coupling Optimization

    M. Inam1, M. H. Dahri2, M. R. Kamarudin3, A. Y. I. Ashyap3, M. H. Jamaluddin4, N. H. Sulaiman5, M. A. Khan6, Z. A. Shamsan7,*, K. Almuhanna7, F. Alorifi7

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2397-2410, 2022, DOI:10.32604/cmc.2022.025650 - 29 March 2022

    Abstract This work provides the design and analysis of a single layer, linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization. Detailed analysis was carried out at 26 GHz design frequency using the simulations of the reflectarray unit cells as well as the periodic reflectarray antenna. The simulated results were verified by the scattering parameter and far-field measurements of the unit cell and periodic arrays, respectively. A close agreement between the simulated and measured results was observed in all the cases. Apart from the unit cells and reflectarray, the waveguide and horn antenna were also fabricated… More >

  • Open Access

    ARTICLE

    5G Antenna Gain Enhancement Using a Novel Metasurface

    Mubashir Ashfaq1, Shahid Bashir1,*, Syed Imran Hussain Shah2, Nisar Ahmad Abbasi3, Hatem Rmili4,5, Muhammad Abbas Khan6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3601-3611, 2022, DOI:10.32604/cmc.2022.025558 - 29 March 2022

    Abstract This article presents a Sub-6 GHz microstrip patch antenna (MPA) with enhanced gain using metamaterial (MTM) superstrate. The source MPA operates at 4.8 GHz and has a peak gain of 5.3 dBi at the resonance frequency. A window-shaped unit cell is designed and investigated through the material wave propagation technique. The unit cell shows an Epsilon Near Zero (ENZ)-Mu Very Large (MVL) behavior around 4.8 GHz. The unit cell has a fourfold geometry which makes it a polarization independent metamaterial. A double layer antenna is designed by placing a 4 × 4 MTM slab as a superstrate More >

  • Open Access

    ARTICLE

    Design and Analysis of Novel Antenna for Millimeter-Wave Communication

    Omar A. Saraereh*

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 413-422, 2022, DOI:10.32604/csse.2022.024202 - 23 March 2022

    Abstract At present, the microwave frequency band bandwidth used for mobile communication is only 600 MHz. In 2020, the 5G mobile Communication required about 1 GHz of bandwidth, so people need to tap new spectrum resources to meet the development needs of mobile Internet traffic that will increase by 1,000 times in the next 10 years. Utilize the potentially large bandwidth (30∼300 GHz) of the millimeter wave frequency band to provide higher data rates is regarded as the potential development trend of the future wireless communication technology. A microstrip patch implementation approach based on electromagnetic coupling feeding… More >

Displaying 51-60 on page 6 of 118. Per Page