Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    LinguTimeX a Framework for Multilingual CTC Detection Using Explainable AI and Natural Language Processing

    Omar Darwish1, Shorouq Al-Eidi2, Abdallah Al-Shorman1, Majdi Maabreh3, Anas Alsobeh4, Plamen Zahariev5, Yahya Tashtoush6,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.068266 - 10 November 2025

    Abstract Covert timing channels (CTC) exploit network resources to establish hidden communication pathways, posing significant risks to data security and policy compliance. Therefore, detecting such hidden and dangerous threats remains one of the security challenges. This paper proposes LinguTimeX, a new framework that combines natural language processing with artificial intelligence, along with explainable Artificial Intelligence (AI) not only to detect CTC but also to provide insights into the decision process. LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely. LinguTimeX demonstrates strong effectiveness in detecting CTC across… More >

  • Open Access

    ARTICLE

    Fireworks Optimization with Deep Learning-Based Arabic Handwritten Characters Recognition Model

    Abdelwahed Motwakel1,*, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Ayman Yafoz4, Mahmoud Othman5, Abu Sarwar Zamani1, Ishfaq Yaseen1, Amgad Atta Abdelmageed1

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1387-1403, 2024, DOI:10.32604/csse.2023.033902 - 13 September 2024

    Abstract Handwritten character recognition becomes one of the challenging research matters. More studies were presented for recognizing letters of various languages. The availability of Arabic handwritten characters databases was confined. Almost a quarter of a billion people worldwide write and speak Arabic. More historical books and files indicate a vital data set for many Arab nations written in Arabic. Recently, Arabic handwritten character recognition (AHCR) has grabbed the attention and has become a difficult topic for pattern recognition and computer vision (CV). Therefore, this study develops fireworks optimization with the deep learning-based AHCR (FWODL-AHCR) technique. The… More >

  • Open Access

    ARTICLE

    Chaotic Elephant Herd Optimization with Machine Learning for Arabic Hate Speech Detection

    Badriyya B. Al-onazi1, Jaber S. Alzahrani2, Najm Alotaibi3, Hussain Alshahrani4, Mohamed Ahmed Elfaki4, Radwa Marzouk5, Heba Mohsen6, Abdelwahed Motwakel7,*

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 567-583, 2024, DOI:10.32604/iasc.2023.033835 - 11 July 2024

    Abstract In recent years, the usage of social networking sites has considerably increased in the Arab world. It has empowered individuals to express their opinions, especially in politics. Furthermore, various organizations that operate in the Arab countries have embraced social media in their day-to-day business activities at different scales. This is attributed to business owners’ understanding of social media’s importance for business development. However, the Arabic morphology is too complicated to understand due to the availability of nearly 10,000 roots and more than 900 patterns that act as the basis for verbs and nouns. Hate speech… More >

  • Open Access

    ARTICLE

    Abstractive Arabic Text Summarization Using Hyperparameter Tuned Denoising Deep Neural Network

    Ibrahim M. Alwayle1, Hala J. Alshahrani2, Saud S. Alotaibi3, Khaled M. Alalayah1, Amira Sayed A. Aziz4, Khadija M. Alaidarous1, Ibrahim Abdulrab Ahmed5, Manar Ahmed Hamza6,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 153-168, 2023, DOI:10.32604/iasc.2023.034718 - 05 February 2024

    Abstract Abstractive text summarization is crucial to produce summaries of natural language with basic concepts from large text documents. Despite the achievement of English language-related abstractive text summarization models, the models that support Arabic language text summarization are fewer in number. Recent abstractive Arabic summarization models encounter different issues that need to be resolved. Syntax inconsistency is a crucial issue resulting in the low-accuracy summary. A new technique has achieved remarkable outcomes by adding topic awareness in the text summarization process that guides the module by imitating human awareness. The current research article presents Abstractive Arabic… More >

  • Open Access

    ARTICLE

    Multi-Versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis on Arabic Corpus

    Mesfer Al Duhayyim1,*, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Hussain Alshahrani4, Mohamed Ahmed Elfaki4, Abdullah Mohamed5, Ishfaq Yaseen6, Gouse Pasha Mohammed6, Mohammed Rizwanullah6, Abu Sarwar Zamani6

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3049-3065, 2023, DOI:10.32604/csse.2023.033836 - 09 November 2023

    Abstract Sentiment analysis (SA) of the Arabic language becomes important despite scarce annotated corpora and confined sources. Arabic affect Analysis has become an active research zone nowadays. But still, the Arabic language lags behind adequate language sources for enabling the SA tasks. Thus, Arabic still faces challenges in natural language processing (NLP) tasks because of its structure complexities, history, and distinct cultures. It has gained lesser effort than the other languages. This paper developed a Multi-versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis (MVODRL-AA) on Arabic Corpus. The presented MVODRL-AA model majorly concentrates on identifying… More >

  • Open Access

    ARTICLE

    Parameter Tuned Machine Learning Based Emotion Recognition on Arabic Twitter Data

    Ibrahim M. Alwayle1, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Khaled M. Alalayah1, Khadija M. Alaidarous1, Ibrahim Abdulrab Ahmed4, Mahmoud Othman5, Abdelwahed Motwakel6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3423-3438, 2023, DOI:10.32604/csse.2023.033834 - 03 April 2023

    Abstract Arabic is one of the most spoken languages across the globe. However, there are fewer studies concerning Sentiment Analysis (SA) in Arabic. In recent years, the detected sentiments and emotions expressed in tweets have received significant interest. The substantial role played by the Arab region in international politics and the global economy has urged the need to examine the sentiments and emotions in the Arabic language. Two common models are available: Machine Learning and lexicon-based approaches to address emotion classification problems. With this motivation, the current research article develops a Teaching and Learning Optimization with… More >

  • Open Access

    ARTICLE

    Battle Royale Optimization with Fuzzy Deep Learning for Arabic Sentiment Classification

    Manar Ahmed Hamza1,*, Hala J. Alshahrani2, Jaber S. Alzahrani3, Heba Mohsen4, Mohamed I. Eldesouki5, Mohammed Rizwanullah1

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2619-2635, 2023, DOI:10.32604/csse.2023.034519 - 09 February 2023

    Abstract Aspect-Based Sentiment Analysis (ABSA) on Arabic corpus has become an active research topic in recent days. ABSA refers to a fine-grained Sentiment Analysis (SA) task that focuses on the extraction of the conferred aspects and the identification of respective sentiment polarity from the provided text. Most of the prevailing Arabic ABSA techniques heavily depend upon dreary feature-engineering and pre-processing tasks and utilize external sources such as lexicons. In literature, concerning the Arabic language text analysis, the authors made use of regular Machine Learning (ML) techniques that rely on a group of rare sources and tools.… More >

  • Open Access

    ARTICLE

    Automated Arabic Text Classification Using Hyperparameter Tuned Hybrid Deep Learning Model

    Badriyya B. Al-onazi1, Saud S. Alotaib2, Saeed Masoud Alshahrani3,*, Najm Alotaibi4, Mrim M. Alnfiai5, Ahmed S. Salama6, Manar Ahmed Hamza7

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5447-5465, 2023, DOI:10.32604/cmc.2023.033564 - 28 December 2022

    Abstract The text classification process has been extensively investigated in various languages, especially English. Text classification models are vital in several Natural Language Processing (NLP) applications. The Arabic language has a lot of significance. For instance, it is the fourth mostly-used language on the internet and the sixth official language of the United Nations. However, there are few studies on the text classification process in Arabic. A few text classification studies have been published earlier in the Arabic language. In general, researchers face two challenges in the Arabic text classification process: low accuracy and high dimensionality… More >

  • Open Access

    ARTICLE

    Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition

    Mohammed Maray1, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Saeed Masoud Alshahrani4,*, Najm Alotaibi5, Sana Alazwari6, Mahmoud Othman7, Manar Ahmed Hamza8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5467-5482, 2023, DOI:10.32604/cmc.2023.033534 - 28 December 2022

    Abstract The recognition of the Arabic characters is a crucial task in computer vision and Natural Language Processing fields. Some major complications in recognizing handwritten texts include distortion and pattern variabilities. So, the feature extraction process is a significant task in NLP models. If the features are automatically selected, it might result in the unavailability of adequate data for accurately forecasting the character classes. But, many features usually create difficulties due to high dimensionality issues. Against this background, the current study develops a Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition (SFODTL-AHCR) model. The… More >

  • Open Access

    ARTICLE

    Predicting Violence-Induced Stress in an Arabic Social Media Forum

    Abeer Abdulaziz AlArfaj1, Nada Ali Hakami2,*, Hanan Ahmed Hosni Mahmoud1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1423-1439, 2023, DOI:10.32604/iasc.2023.028067 - 19 July 2022

    Abstract Social Media such as Facebook plays a substantial role in virtual communities by sharing ideas and ideologies among different populations over time. Social interaction analysis aids in defining people’s emotions and aids in assessing public attitudes, towards different issues such as violence against women and children. In this paper, we proposed an Arabic language prediction model to identify the issue of Violence-Induced Stress in social media. We searched for Arabic posts of many countries through Facebook application programming interface (API). We discovered that the stress state of a battered woman is usually related to her… More >

Displaying 1-10 on page 1 of 12. Per Page