Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (477)
  • Open Access

    REVIEW

    Review of Optical Character Recognition for Power System Image Based on Artificial Intelligence Algorithm

    Xun Zhang1, Wanrong Bai1, Haoyang Cui2,*

    Energy Engineering, Vol.120, No.3, pp. 665-679, 2023, DOI:10.32604/ee.2023.020342 - 03 January 2023

    Abstract Optical Character Recognition (OCR) refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image. This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence (AI) algorithms, in which the different AI algorithms for OCR analysis are classified and reviewed. Firstly, the mechanisms and characteristics of artificial neural network-based OCR are summarized. Secondly, this paper explores machine learning-based OCR, and draws the conclusion that the algorithms available for this form of OCR are still in their infancy, with low generalization and More >

  • Open Access

    ARTICLE

    Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid

    Manish Kumar1,2,*, Nitai Pal1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4785-4799, 2023, DOI:10.32604/cmc.2022.032971 - 28 December 2022

    Abstract Increasing energy demands due to factors such as population, globalization, and industrialization has led to increased challenges for existing energy infrastructure. Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable, cheap, and easily available sources of energy. Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions. But the integration of distributed energy sources and increase in electric demand enhance instability in the grid. Short-term electrical load forecasting reduces the grid… More >

  • Open Access

    ARTICLE

    Adaptive Resource Planning for AI Workloads with Variable Real-Time Tasks

    Sunhwa Annie Nam1, Kyungwoon Cho2, Hyokyung Bahn3,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6823-6833, 2023, DOI:10.32604/cmc.2023.035481 - 28 December 2022

    Abstract AI (Artificial Intelligence) workloads are proliferating in modern real-time systems. As the tasks of AI workloads fluctuate over time, resource planning policies used for traditional fixed real-time tasks should be re-examined. In particular, it is difficult to immediately handle changes in real-time tasks without violating the deadline constraints. To cope with this situation, this paper analyzes the task situations of AI workloads and finds the following two observations. First, resource planning for AI workloads is a complicated search problem that requires much time for optimization. Second, although the task set of an AI workload may… More >

  • Open Access

    REVIEW

    Artificial Intelligence-Enabled Chatbots in Mental Health: A Systematic Review

    Batyrkhan Omarov1,*, Sergazi Narynov2, Zhandos Zhumanov2

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5105-5122, 2023, DOI:10.32604/cmc.2023.034655 - 28 December 2022

    Abstract Clinical applications of Artificial Intelligence (AI) for mental health care have experienced a meteoric rise in the past few years. AI-enabled chatbot software and applications have been administering significant medical treatments that were previously only available from experienced and competent healthcare professionals. Such initiatives, which range from “virtual psychiatrists” to “social robots” in mental health, strive to improve nursing performance and cost management, as well as meeting the mental health needs of vulnerable and underserved populations. Nevertheless, there is still a substantial gap between recent progress in AI mental health and the widespread use of… More >

  • Open Access

    ARTICLE

    Exploiting Human Pose and Scene Information for Interaction Detection

    Manahil Waheed1, Samia Allaoua Chelloug2,*, Mohammad Shorfuzzaman3, Abdulmajeed Alsufyani3, Ahmad Jalal1, Khaled Alnowaiser4, Jeongmin Park5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5853-5870, 2023, DOI:10.32604/cmc.2023.033769 - 28 December 2022

    Abstract Identifying human actions and interactions finds its use in many areas, such as security, surveillance, assisted living, patient monitoring, rehabilitation, sports, and e-learning. This wide range of applications has attracted many researchers to this field. Inspired by the existing recognition systems, this paper proposes a new and efficient human-object interaction recognition (HOIR) model which is based on modeling human pose and scene feature information. There are different aspects involved in an interaction, including the humans, the objects, the various body parts of the human, and the background scene. The main objectives of this research include… More >

  • Open Access

    ARTICLE

    Sparrow Search Optimization with Transfer Learning-Based Crowd Density Classification

    Mohammad Yamin1,*, Mishaal Mofleh Almutairi2, Saeed Badghish3, Saleh Bajaba4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4965-4981, 2023, DOI:10.32604/cmc.2023.033705 - 28 December 2022

    Abstract Due to the rapid increase in urbanization and population, crowd gatherings are frequently observed in the form of concerts, political, and religious meetings. HAJJ is one of the well-known crowding events that takes place every year in Makkah, Saudi Arabia. Crowd density estimation and crowd monitoring are significant research areas in Artificial Intelligence (AI) applications. The current research study develops a new Sparrow Search Optimization with Deep Transfer Learning based Crowd Density Detection and Classification (SSODTL-CD2C) model. The presented SSODTL-CD2C technique majorly focuses on the identification and classification of crowd densities. To attain this, SSODTL-CD2C… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Model Enabled Secure UAV Classification for Industry 4.0

    Khalid A. Alissa1, Mohammed Maray2, Areej A. Malibari3, Sana Alazwari4, Hamed Alqahtani5, Mohamed K. Nour6, Marwa Obbaya7, Mohamed A. Shamseldin8, Mesfer Al Duhayyim9,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5349-5367, 2023, DOI:10.32604/cmc.2023.033532 - 28 December 2022

    Abstract Emerging technologies such as edge computing, Internet of Things (IoT), 5G networks, big data, Artificial Intelligence (AI), and Unmanned Aerial Vehicles (UAVs) empower, Industry 4.0, with a progressive production methodology that shows attention to the interaction between machine and human beings. In the literature, various authors have focused on resolving security problems in UAV communication to provide safety for vital applications. The current research article presents a Circle Search Optimization with Deep Learning Enabled Secure UAV Classification (CSODL-SUAVC) model for Industry 4.0 environment. The suggested CSODL-SUAVC methodology is aimed at accomplishing two core objectives such… More >

  • Open Access

    ARTICLE

    Optimization of Coronavirus Pandemic Model Through Artificial Intelligence

    Manal. M. Alqarni1, Arooj Nasir2,3, Dumitru Baleanu4,5,6, Ali Raza7, Tahir Nawaz Cheema8,*, Nauman Ahmed9, Muhammad Rafiq10, Umbreen Fatima11, Emad E. Mahmoud12

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6807-6822, 2023, DOI:10.32604/cmc.2023.033283 - 28 December 2022

    Abstract Artificial intelligence is demonstrated by machines, unlike the natural intelligence displayed by animals, including humans. Artificial intelligence research has been defined as the field of study of intelligent agents, which refers to any system that perceives its environment and takes actions that maximize its chance of achieving its goals. The techniques of intelligent computing solve many applications of mathematical modeling. The research work was designed via a particular method of artificial neural networks to solve the mathematical model of coronavirus. The representation of the mathematical model is made via systems of nonlinear ordinary differential equations.… More >

  • Open Access

    ARTICLE

    Improved Hybrid Deep Collaborative Filtering Approach for True Recommendations

    Muhammad Ibrahim1, Imran Sarwar Bajwa1, Nadeem Sarwar2,*, Haroon Abdul Waheed3, Muhammad Zulkifl Hasan4, Muhammad Zunnurain Hussain4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5301-5317, 2023, DOI:10.32604/cmc.2023.032856 - 28 December 2022

    Abstract Recommendation services become an essential and hot research topic for researchers nowadays. Social data such as Reviews play an important role in the recommendation of the products. Improvement was achieved by deep learning approaches for capturing user and product information from a short text. However, such previously used approaches do not fairly and efficiently incorporate users’ preferences and product characteristics. The proposed novel Hybrid Deep Collaborative Filtering (HDCF) model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations. To overcome the cold start problem, the new overall rating is generated… More >

  • Open Access

    ARTICLE

    Profiling of Urban Noise Using Artificial Intelligence

    Le Quang Thao1,2,*, Duong Duc Cuong2, Tran Thi Tuong Anh3, Tran Duc Luong4

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1309-1321, 2023, DOI:10.32604/csse.2023.031010 - 03 November 2022

    Abstract Noise pollution tends to receive less awareness compared to other types of pollution, however, it greatly impacts the quality of life for humans such as causing sleep disruption, stress or hearing impairment. Profiling urban sound through the identification of noise sources in cities could help to benefit livability by reducing exposure to noise pollution through methods such as noise control, planning of the soundscape environment, or selection of safe living space. In this paper, we proposed a self-attention long short-term memory (LSTM) method that can improve sound classification compared to previous baselines. An attention mechanism… More >

Displaying 281-290 on page 29 of 477. Per Page