Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (149)
  • Open Access

    ARTICLE

    Bioactive Potential of Calophyllum inophyllum: Phytochemical Profiles, Biological Activities, and In Silico Pharmacokinetic Predictions

    Luksamee Vittaya1,*, Chakhriya Chalad1, Sittichoke Janyong2, Nararak Leesakul3

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 4091-4115, 2025, DOI:10.32604/phyton.2025.074891 - 29 December 2025

    Abstract Calophyllum inophyllum is a tropical plant that could have useful medicinal properties for pharmaceutical and cosmetic applications. The present study extracted the flower, fruit, leaf, twig, and bark of the plant by maceration in different organic solvents. The correlation between bioactive compounds and their biological activities was investigated, with emphasis on their therapeutic relevance through in silico pharmacokinetic predictions using SwissADME. Qualitative and quantitative analyses were conducted to determine the total phenolic, flavonoid, and saponin contents of the extracts. Spectral analysis of the extracts revealed –OH, C=O, C=C, and C–H functional groups. The antioxidant activity of the… More > Graphic Abstract

    Bioactive Potential of <i>Calophyllum inophyllum</i>: Phytochemical Profiles, Biological Activities, and <i>In Silico</i> Pharmacokinetic Predictions

  • Open Access

    ARTICLE

    Enhancing anticancer, antioxidant, and antibacterial activities of chalcogen-based SnSe nanoparticles synthesized through the co-precipitation method

    H. A. Rather1,*, J. B. A. Wahid2, M. A. Dar3, L. Guganathan4, U. A. Dar5, P. Arularasan6, S. E. I. Yagoub7, L. G. Amin7

    Chalcogenide Letters, Vol.22, No.5, pp. 461-468, 2025, DOI:10.15251/CL.2025.225.461

    Abstract SnSe powdered nanoparticles (NPs) are prepared using the co-precipitation method. The powdered NPs were studied using X-ray diffraction (XRD), UV-absorbance spectroscopy, and scanning electron microscopy (SEM) characterization techniques. The XRD result indicates that NPs are orthorhombic with a crystalline size of 4 nm for TS-1, 6 nm for TS-2, and 13 nm for TS-3, respectively. The SEM images show the surface morphology of the prepared NPs is not fully spherical, but semi-flower-like. The optical properties of the powdered NPs are found by UV-Vis absorbance spectroscopy, in which the highest absorbance was found between 200 nm More >

  • Open Access

    REVIEW

    Metabolic Adaptations of Cyanobacteria to Environmental Stress: Mechanisms and Biotechnological Potentials

    Riya Tripathi, Varsha K. Singh, Palak Rana, Sapana Jha, Ashish P. Singh, Payel Rana, Rajeshwar P. Sinha*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3371-3399, 2025, DOI:10.32604/phyton.2025.070712 - 01 December 2025

    Abstract Cyanobacteria are photosynthetic prokaryotes. They exhibit remarkable metabolic adaptability, enabling them to withstand oxidative stress, high salinity, temperature extremes, and UV radiation (UVR). Their adaptive strategies involve complex regulatory networks that affect gene expression, enzyme activity, and metabolite fluxes to maintain cellular homeostasis. Key stress response systems include the production of antioxidants such as peroxidases (POD), catalase (CAT), and superoxide dismutase (SOD), which detoxify reactive oxygen species (ROS). To withstand environmental stresses, cyanobacteria maintain osmotic balance by accumulating compatible solutes, such as glycine betaine, sucrose, and trehalose. They also adapt to temperature and light fluctuations… More >

  • Open Access

    ARTICLE

    Facile Preparation of Robust Peach Gum Polysaccharide with Remarkably Enhanced Antibacterial and Antioxidant Performance

    Mengting Huang, Meiting Lu, Li Yang, Jiwen Long, Li Zhou*

    Journal of Renewable Materials, Vol.13, No.10, pp. 2077-2090, 2025, DOI:10.32604/jrm.2025.02025-0122 - 22 October 2025

    Abstract Peach gum polysaccharide (PGP), a readily available natural polysaccharide, boasts substantial potential across diverse applications, yet its practical utility is severely limited by its vulnerability to bacterial growth and limited antioxidant activity. Herein, we introduced a simple and effective method to enhance the antibacterial and antioxidant properties of PGP by conjugating it with salicylic acid (SA). Cytotoxicity evaluation results confirmed that the resulting PGP-SA retains the excellent biocompatibility of PGP. Notably, PGP-SA demonstrates outstanding antibacterial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, outperforming non-modified PGP. Its antibacterial mechanism is hypothesized to stem from… More > Graphic Abstract

    Facile Preparation of Robust Peach Gum Polysaccharide with Remarkably Enhanced Antibacterial and Antioxidant Performance

  • Open Access

    REVIEW

    Design of Nanostructured Surfaces and Hydrogel Coatings for Anti-Bacterial Adhesion

    Nanpu Cao1, Huan Luo1, Song Yue1, Yong Chen1, Mao Xu1, Pu Cao1, Tao Xin1, Hongying Luo1, Fa Zhang2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 661-675, 2025, DOI:10.32604/jpm.2025.067313 - 30 September 2025

    Abstract This review systematically summarizes recent advancements in the design of antibacterial hydrogels and the surface-related factors influencing microbial adhesion to polymeric materials. Hydrogels, characterized by their three-dimensional porous architecture and ultra-high water content, serve as ideal platforms for incorporating antibacterial agents (e.g., metal ions, natural polymers) through physical/chemical interactions, enabling sustained release and enhanced antibacterial efficacy. For traditional polymers, surface properties (e.g., roughness, charge, superhydrophobicity, free energy, nanoforce gradients) play critical roles in microbial adhesion. Modifying the surface properties of polymers through surface treatment can regulate antibacterial performance. In particular, by referencing the micro/nanostructures found More >

  • Open Access

    ARTICLE

    Sustainable Removal of Cu2+ and Pb2+ Ions via Adsorption Using Polyvinyl Alcohol/Neem Leaf Extract/Chitosan (From Shrimp Shells) Composite Films

    Deepti Rekha Sahoo, Trinath Biswal*

    Journal of Polymer Materials, Vol.42, No.3, pp. 811-835, 2025, DOI:10.32604/jpm.2025.067022 - 30 September 2025

    Abstract The purpose of this research work is to determine the removal efficiency of Cu2+ and Pb2+ ions using polyvinyl alcohol/neem leaf extract/chitosan (PVA/NLE/CS) composite films as adsorbent materials from an aqueous medium, with respect to pH, contact time, and adsorbent dosage. The synthesized composite material was characterized using Fourier Transform Infrared (FTIR) spectroscopy, thermogravimetric analysis-Derivative Thermogravimetry (TGA-DTG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX). The antibacterial activity and swelling response of the material were studied using suitable methodologies. The FTIR study confirmed the interactions among PVA, chitosan, and… More >

  • Open Access

    ARTICLE

    Planting Years Drive Structural and Functional Shifts in the Rhizosphere Bacterial Microbiome of Zanthoxylum bungeanum

    De Zhang1,2, Yuan-Zu Ji1, Tong Zhao1, Jun-Ying Zhao1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2815-2838, 2025, DOI:10.32604/phyton.2025.069196 - 30 September 2025

    Abstract This study investigated the effects of planting duration (1, 5, 10 and 15 years) on soil properties, bacterial community diversity, and function in the rhizosphere of Zanthoxylum bungeanum. We employed Illumina high-throughput sequencing and PICRUSt2 functional prediction to analyze the structure and functional potential of rhizosphere soil bacterial communities. The Mantel test and redundancy analysis were used to identify physicochemical factors influencing bacterial community structure and function. The results indicated significant differences in rhizosphere soil physicochemical properties across planting years: the content of organic matter, alkaline hydrolyzable nitrogen in the soil, as well as the activity… More >

  • Open Access

    ARTICLE

    Species Number of Invasive Plants Negatively Regulates Carbon Contents, Enzyme Activities, and Bacterial Alpha Diversity in Soil

    Qi Chen1,2, Yizhuo Du1, Yingsheng Liu1, Yue Li1, Chuang Li1, Zhelun Xu1,3, Congyan Wang1,4,5,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2873-2891, 2025, DOI:10.32604/phyton.2025.065970 - 30 September 2025

    Abstract The leaves of multiple invasive plants can coexist and intermingle within the same environment. As species number of invasive plants increases, variations may occur in decomposition processes of invasive plants, soil nutrient contents, soil enzyme activities, and soil microbial community structure. Existing progress have predominantly focused on the ecological effects of one species of invasive plant compared to native species, with limited attention paid to the ecological effects of multiple invasive plants compared to one species of invasive plant. This study aimed to determine the differences in the effects of mono- and co-decomposition of four… More >

  • Open Access

    PROCEEDINGS

    Antibacterial Surface Modification and Its Application on Janus Wearable Devices

    Kaiwei Tang1,2,*, Xiufeng Wang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010499

    Abstract The prolonged health monitoring using wearable technology faces challenges stemming from perspiration, including bacterial proliferation, compromised adhesion, signal quality deterioration, and user discomfort. Notably, excessive sweat fosters bacterial colonization, escalating infection risks, and compromising biomarker analysis. Existing antibacterial approaches, unfortunately, risk disrupting the delicate balance of skin microbiota. To address this, we’ve developed a Janus patch featuring Zn-Al layered double hydroxide (LDH) modification, which boasts sustained antibacterial properties while preserving the epidermal microecology. It integrates a hydrophobic LDH fabric that mechanically eradicate bacteria via a nanoknife effect, and a laser-engraved medical adhesive with microholes for More >

  • Open Access

    REVIEW

    Extracellular Vesicles as Therapeutic Tools against Infectious Diseases

    CHIOMA C. EZEUKO#, SANDANI V. T. WIJERATHNE#, QIANA L. MATTHEWS*

    BIOCELL, Vol.49, No.9, pp. 1605-1629, 2025, DOI:10.32604/biocell.2025.065474 - 25 September 2025

    Abstract Extracellular vesicles (EVs) have arisen as potential therapeutic tools in managing infectious diseases because EVs can regulate cell-to-cell signaling, function as drug transport mechanisms, and influence immune reactions. They are obtained from a myriad of sources, such as plants, humans, and animal cells. EVs like exosomes and ectosomes can be utilized in their native form as therapeutics or engineered to encompass antimicrobials, vaccines, and oligonucleotides of interest with a targeted delivery strategy. An in-depth understanding of host-pathogen dynamics provides a solid foundation for exploiting its full potential in therapeutics against infectious diseases. This review mainly More >

Displaying 1-10 on page 1 of 149. Per Page