Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Responses of Wheat Production, Quality, and Soil Profile Properties to Biochar Applied at Different Seasons in a Rice-Wheat Rotation

    Lipei Chen, Rilie Deng, Xuewen Li, Min Yu, Hongdong Xiao*

    Phyton-International Journal of Experimental Botany, Vol.92, No.12, pp. 3359-3370, 2023, DOI:10.32604/phyton.2023.046877

    Abstract

    In the rice-wheat rotation system, biochar (BC) can be applied at the initiation of the rice or wheat season. Here, we compared the effects of BC that were applied at two different crop seasons on wheat production, quality, and soil profile properties in a rice-wheat rotation system with nitrogen (N) fertilizer applied at 280 kg/ha rate. Results showed that both wheat grain production and N recovery use efficiency were influenced by BC applied at two crop seasons. Biochar application did not affect the total non-essential amino-acid, but when applied during wheat season, BC significantly (p

    More >

  • Open Access

    ARTICLE

    Naturally Nitrogen-Doped Biochar Made from End-of-Life Wood Panels for SO2 Gas Depollution

    Hamdi Hachicha1,2, Mamadou Dia2, Hassine Bouafif2, Ahmed Koubaa1, Mohamed Khlif3, Flavia Lega Braghiroli1,*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3807-3829, 2023, DOI:10.32604/jrm.2023.029454

    Abstract Reconstituted wood panels have several advantages in terms of ease of manufacturing, but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly. Currently, the most common approach for dealing with this waste is incineration. In this study, reconstituted wood panels were converted into activated biochar through a two-step thermochemical process: (i) biochar production using pilot scale fast pyrolysis at 250 kg/h and 450°C; and (ii) a physical activation at three temperatures (750°C, 850°C and 950°C) using an in-house activation furnace (1 kg/h). Results showed that… More > Graphic Abstract

    Naturally Nitrogen-Doped Biochar Made from End-of-Life Wood Panels for SO<sub>2</sub> Gas Depollution

  • Open Access

    ARTICLE

    Surfactant-Modified Hydrophobic Biochar Derived from Laver (Porphyra haitanensis) with Superior Removal Performance for Kitchen Oil

    Jiaxing Sun1, Lili Ji1,*, Qianrui He1, Ran Li1, Xiaoyue Xia2, Yaning Wang1, Yi Yang2, Lu Cai3, Jian Guo2

    Journal of Renewable Materials, Vol.11, No.8, pp. 3227-3243, 2023, DOI:10.32604/jrm.2023.027160

    Abstract

    In this study, a novel absorpent (MSAR600°C) with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae, laver (Porphyra haitanensis) by incorporating high-temperature carbonization and alkyl polyglucosides (APG) and rhamnolipid (RL) surfactants modification. The characterization results showed MSAR600°C possessed a louts-leaf-like papillae microstructure with high contact angle (137.5°), abundant porous structure with high specific surface area (23.4 m2/g), and various oxygen-containing functional groups (-OH, C=O, C-O). Batch adsorption experiments were conducted to investigate the effect of adsorption time, temperature, pH, and absorbent dose on kitchen oil adsorption

    More > Graphic Abstract

    Surfactant-Modified Hydrophobic Biochar Derived from Laver (<i>Porphyra haitanensis</i>) with Superior Removal Performance for Kitchen Oil

  • Open Access

    ARTICLE

    Effects of Different Chinese Hickory Husk Returning Modes on Soil Nutrition and Microbial Community in Acid Forest Soil

    Qian Liu1, Sayikal Duyxanale1, Yongqian Tang2, Xinyu Shen1, Yuanlai Zhao1, Xinru Ma1, Shuai Shao1, Chenfei Liang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 943-954, 2023, DOI:10.32604/phyton.2022.023225

    Abstract Chinese hickory (Carya cathayensis Sarg.) is an important economic forest in Southeastern China. A large amount of hickory husk waste is generated every year but with a low proportion of returning. Meanwhile, intensive management has resulted in soil degradation of Chinese hickory plantations. This study aims to investigate the effects of three Chinese hickory husk returning modes on soil amendment, including soil acidity, soil nutrition, and microbial community. The field experiment carried out four treatments: control (CK), hickory husk mulching (HM), hickory husk biochar (BC), and hickory husk organic fertilizer (OF). The phospholipid fatty acid (PLFA)… More >

  • Open Access

    CORRECTION

    Preparation of Kenaf Biochar and Its Adsorption Properties for Methylene Blue

    Xin Wan1,2,#, Zhigang Xia3,4,#, Xiaoli Yang1,2, Chengfeng Zhou2, Yuanming Zhang1,2, Haoxi Ben1,2, Guangting Han1,2, Wei Jiang1,2,*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1531-1531, 2023, DOI:10.32604/jrm.2023.027109

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Preparation of Kenaf Biochar and Its Adsorption Properties for Methylene Blue

    Xin Wan1,2,#, Zhigang Xia3,4,#, Xiaoli Yang1,2, Chengfeng Zhou2, Yuanming Zhang1,2, Haoxi Ben1,2, Guangting Han1,2, Wei Jiang1,2,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3391-3404, 2022, DOI:10.32604/jrm.2022.021102

    Abstract The toxic dyestuffs from printing and dyeing wastewater have caused serious damages to the ecological environment, thus exploring effective methods to remove them having become a key topic. Here, a series of biochar samples were synthesized form kenaf to adsorb methylene blue (MB), which was acted as the dye representative for the test of adsorption capacity due to the presence of abundant double bond and aromatic heterocyclic ring. By tuning the raw materials and pyrolysis temperature, a super adsorption capacity about 164.21 mg·g–1 was obtained over the biochar that pyrolyzed at 700°C with the kenaf fiber… More >

  • Open Access

    ARTICLE

    Magnetic Wakame-Based Biochar/Ni Composites with Enhanced Adsorption Performance for Diesel

    Hua Jing1, Shiyao Lu1, Lili Ji1,*, Shijie Li1, Baikang Zhu2, Jian Guo3, Jiaxing Sun1, Lu Cai4, Yaning Wang1

    Journal of Renewable Materials, Vol.10, No.12, pp. 3147-3165, 2022, DOI:10.32604/jrm.2022.020215

    Abstract In this study, the magnetic wakame biochar/Ni composites were prepared with three activating reagents of H3PO4, ZnCl2 and KOH by one-step pyrolysis activation, characterized by BET, SEM, TEM, FI-IR, XRD, Raman, and elemental analyzer, and their adsorption performance for diesel were also analyzed. The results showed that wakame biochar/Ni composites had larger specific surface area, abundant porous structure, and various reactive groups, rendering its enhancement of adsorption efficiency. The adsorption experiments indicated that the maximum adsorption capacities for diesel using WBPA 0.5, WBHZ 0.5 and WBPH 0.5 were 4.11, 8.83, and 13.47 g/g, respectively. The Langmuir More >

  • Open Access

    ARTICLE

    Termites Improve the Horizontal Movement of Carbonized Particles: A Step towards Sustainable Utilization of Biochar

    Mazhar Ali1, Nasir Masood1, Hafiz Muhammad Rashad Javeed1, Ibrahim Al-Ashkar2, Khalid F. Almutairi2, Liyun Liu3, Muhammad Aqeel Sarwar4, Karthika Rajendran5, Ayman EL Sabagh6,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.10, pp. 2235-2248, 2022, DOI:10.32604/phyton.2022.021644

    Abstract Soil amendments containing carbonized materials increase the soil carbon reservoir, influence plant productivity, and, ultimately, help to clean the environment. There is data on the effect of such additions on soil physicochemical properties or plant growth, but few studies have focused on how these carbonized materials are distributed by termite species in the soil ecosystem. It is the first comprehensive study of the transportation of biochar (BC) by termite species under tropical environmental conditions in Pakistan. The present study was carried out to test the hypothesis that if termite species I) were involved in the… More >

  • Open Access

    ARTICLE

    Organic Amendments Improve Plant Morpho-Physiology and Antioxidant Metabolism in Mitigating Drought Stress in Bread Wheat (Triticum aestivum L.)

    Taufika Islam Anee1,#, Md. Nur Nabi Islam1,#, Mohamed M. Hassan2, Abdul Awal Chowdhury Masud1, Md. Mahabub Alam1, Mirza Hasanuzzaman1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 1959-1972, 2022, DOI:10.32604/phyton.2022.021137

    Abstract Due to the unpredictable climate change, drought stress is being considered as one of the major threats to crop production. Wheat (Triticum aestivum L. cv. BARI Gom-26) being a dry season crop frequently faces scarcity of water and results in a lower yield. Therefore, this experiment aims to explore the role of different organic amendments (OAs) in mitigating drought stress-induced damage. The pot experiment consisted of different organic amendments viz. compost, vermicompost and poultry manure @0.09 kg m−2 soil, biochar @2.5% w/w soil and chitosan @1% w/w soil which was imposed on the plants grown under both… More >

  • Open Access

    ARTICLE

    A Novel Magnetic Carbon Based Catalyst Synthesized from Reed Straw and Electric Furnace Dust for Biodiesel Production

    Fuping Wang1, Lele Kang1, Rui Ji1, Tianji Liu1, Qing Yu1, Di Gao1, Xiaoman Wang1, Yitong Wang1,*, Jie Yang2,*

    Journal of Renewable Materials, Vol.10, No.8, pp. 2099-2115, 2022, DOI:10.32604/jrm.2022.018806

    Abstract In the era of serious greenhouse gas emission and energy shortage, it is necessary to use solid waste to prepare new renewable materials. In this work, the potential application of reed straw and electric furnace dust was explored. Firstly, magnetic carbon carrier (EFD&C) was prepared by high temperature calcination, and then magnetic carbon catalyst (SM@EFD&C) was prepared by activation of sodium methoxide. The catalyst was used to prepare biodiesel by transesterification reaction to test its activity and stability. Reed biochar, EFD&C and SM@EFD&C were detected by Diffraction of X-rays (XRD), Fourier transform infrared (FT-IR), Inductively… More > Graphic Abstract

    A Novel Magnetic Carbon Based Catalyst Synthesized from Reed Straw and Electric Furnace Dust for Biodiesel Production

Displaying 1-10 on page 1 of 29. Per Page