Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (142)
  • Open Access

    REVIEW

    Research progress on cancer-associated fibroblasts in osteosarcoma

    LIWEN FENG1,2,#,*, YUTING CHEN3,#, WENYI JIN4

    Oncology Research, Vol.33, No.5, pp. 1091-1103, 2025, DOI:10.32604/or.2024.054207 - 18 April 2025

    Abstract Osteosarcoma (OS) is a prevalent primary bone malignancy with limited treatment options. Therefore, it is imperative to investigate and understand the mechanisms underlying OS pathogenesis. Cancer-associated fibroblasts (CAFs) are markedly abundant in tumor stromal cells and are essentially involved in the modulation of tumor occurrence and development. In recent years, CAFs have become a hotspot as researchers aim to elucidate CAF mechanisms that regulate tumor progression. However, most studies on CAFs are limited to a few common cancers, and their association with OS remains elusive. This review describes the role and current knowledge of CAFs More >

  • Open Access

    ARTICLE

    Microglia and brain macrophages are differentially associated with tumor necrosis in glioblastoma: A link to tumor progression

    CHRISTINA LOH1, YUQI ZHENG1, ISLAM ALZOUBI2, KIMBERLEY L. ALEXANDER3,4, MAGGIE LEE4, WEI-DONG CAI2, YANG SONG5, KERRIE MCDONALD6, ANNA K. NOWAK7, RICHARD B. BANATI8,9, MANUEL B. GRAEBER1,4,10,*

    Oncology Research, Vol.33, No.4, pp. 937-950, 2025, DOI:10.32604/or.2024.056436 - 19 March 2025

    Abstract Background: Microglia and brain macrophages contribute significantly to the tumor microenvironment in highly malignant glioblastoma where they are considered important drivers of tumor progression. A better understanding of the role of the brain macrophages present in glioblastoma appears crucial for improving therapeutic outcomes, especially in the context of novel immunotherapeutic approaches. Methods: We investigated the regulation of two well-established markers for microglia and brain macrophages, IBA1 and CD163, in relation to glioblastoma tumor necrosis using immunohistochemistry and modality fusion heatmaps of whole slide images obtained from adjacent tissue sections. Results: IBA1 and CD163 showed remarkable differences… More >

  • Open Access

    REVIEW

    Targeting myeloid-derived suppressor cells in the tumor microenvironment: potential therapeutic approaches for osteosarcoma

    HYE IN KA#, SE HWAN MUN#, SORA HAN#, YOUNG YANG*

    Oncology Research, Vol.33, No.3, pp. 519-531, 2025, DOI:10.32604/or.2024.056860 - 28 February 2025

    Abstract Osteosarcoma is a bone malignancy characterized by strong invasiveness and rapid disease progression. The tumor microenvironment of osteosarcoma contains various types of immune cells, including myeloid-derived suppressor cells, macrophages, T cells, and B cells. Imbalances of these immune cells can promote the proliferation and metastasis of osteosarcoma. Recent studies have indicated a substantial increase in the levels of myeloid-derived suppressor cells, an immune cell associated with immunosuppressive and pro-cancer effects, in the peripheral blood of patients with osteosarcoma. Moreover, the levels of the pro-inflammatory cytokine interleukin 18 are positively correlated with those of myeloid-derived suppressor More >

  • Open Access

    ARTICLE

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

    Hsien-Tsung Lu1,2, Ching-Chi Hsu3,*, Qi-Quan Jian3, Wei-Ting Chen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1883-1898, 2025, DOI:10.32604/cmes.2025.057675 - 27 January 2025

    Abstract Reconstruction of a traumatic distal femur defect remains a therapeutic challenge. Bone defect implants have been proposed to substitute the bone defect, and their biomechanical performances can be analyzed via a numerical approach. However, the material assumptions for past computational human femur simulations were mainly homogeneous. Thus, this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique. A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique. An… More > Graphic Abstract

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

  • Open Access

    REVIEW

    Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review

    Syed Ijaz Ur Rahman1, Naveed Abbas1, Sikandar Ali2, Muhammad Salman1, Ahmed Alkhayat3, Jawad Khan4,*, Dildar Hussain5, Yeong Hyeon Gu5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1199-1231, 2025, DOI:10.32604/cmes.2025.057462 - 27 January 2025

    Abstract Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system. Analysis of white blood cells (WBCs) in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts. For Acute Lymphocytic Leukemia (ALL), the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse. The researchers have done a lot of work in this field, to demonstrate… More >

  • Open Access

    ARTICLE

    Assessment of Salinity Tolerance and Ecotypic Variability in Vicia narbonensis L.: Morphological, Physiological, and Biochemical Responses

    Hocine Bougrine1,2, Salah Hadjout1,*, Mohamed Zouidi1, Abdeldjalil Belkendil1, Amer Zeghmar1, Chaouki Boulekdam1, Walid Ouaret3, Walid Soufan4, Fathi Abdellatif Belhouadjeb5, Amar Mebarkia2

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 251-267, 2025, DOI:10.32604/phyton.2025.060096 - 24 January 2025

    Abstract Salinity stress is a major challenge for global agriculture, particularly in arid and semi-arid regions, limiting plant productivity due to water and soil salinity. These conditions particularly affect countries along the southern Mediterranean rim, including Algeria, which primarily focuses on pastoral and forage practices. This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L., a fodder legume species recognized for its potential to reclaim marginal soils. Morphological, physiological, and biochemical responses were assessed in three ecotypes (eco2, eco9, and eco10) exposed to different salinity levels (low, moderate, and severe). The study was conducted using… More >

  • Open Access

    ARTICLE

    Attention Eraser and Quantitative Measures for Automated Bone Age Assessment

    Liuqiang Shu, Lei Yu*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 627-644, 2025, DOI:10.32604/cmc.2024.056077 - 03 January 2025

    Abstract Bone age assessment (BAA) aims to determine whether a child’s growth and development are normal concerning their chronological age. To predict bone age more accurately based on radiographs, and for the left-hand X-ray images of different races model can have better adaptability, we propose a neural network in parallel with the quantitative features from the left-hand bone measurements for BAA. In this study, a lightweight feature extractor (LFE) is designed to obtain the feature maps from radiographs, and a module called attention eraser module (AEM) is proposed to capture the fine-grained features. Meanwhile, the dimensional… More >

  • Open Access

    PROCEEDINGS

    Investigation of the Effects of Bone Material Modelling Strategies on the Biomechanics of the Thoracolumbar Spine Using Finite Element Method

    Ching-Chi Hsu1,*, Hsin-Hao Lin1, Kao-Shang Shih2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011792

    Abstract Decompression surgery is one of the useful methods to relieve the pressure on the spinal cord and nerves [1]. In computational simulation, various bone material modelling strategies have been used to model cortical bone and cancellous bone of spinal vertebrae [2,3]. However, the effects of the bone material modelling strategies on the biomechanics of the thoracolumbar spine are unclear. Thus, this study aimed to investigate the biomechanics of the thoracolumbar spine with various bone modelling strategies using a patient-specific finite element modelling technique.
    Three-dimensional finite element models of the human thoracolumbar spine were developed from the… More >

  • Open Access

    COMMENTARY

    A commentary on the interplay of biomaterials and cell adhesion: new insights in bone tissue regeneration

    A. NOEL GRAVINA1,2, NOELIA D´ELÍA1,2, LUCIANO A. BENEDINI2,3,*, PAULA MESSINA1,2

    BIOCELL, Vol.48, No.11, pp. 1517-1520, 2024, DOI:10.32604/biocell.2024.055513 - 07 November 2024

    Abstract This article navigates the relationship between biomaterials and osteogenic cell adhesion, highlighting the importance of mimicking the physiological response for bone tissue regeneration. Within this spirit is an initial description of the interaction between osteoblasts and osteoprogenitor cells with the extracellular matrix, explaining the leading role of integrins and cadherins in cell adhesion, and the intracellular signaling pathways elicited. Additionally, there is a focus on the strategies of advanced biomaterials that foster osteogenesis by replicating the native environment, taking advantage of these known specific signaling pathways. The final remarks lay on the need for careful More >

  • Open Access

    ARTICLE

    Enhancing Renewable Energy Integration: A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks

    Ali S. Alghamdi1,*, Mohamed A. Zohdy2, Saad Aldoihi3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1339-1370, 2024, DOI:10.32604/cmes.2024.048839 - 20 May 2024

    Abstract In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources (RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon tax is included in… More >

Displaying 1-10 on page 1 of 142. Per Page