Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,400)
  • Open Access

    ARTICLE

    HATLedger: An Approach to Hybrid Account and Transaction Partitioning for Sharded Permissioned Blockchains

    Shuai Zhao, Zhiwei Zhang*, Junkai Wang, Ye Yuan, Guoren Wang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073315 - 12 January 2026

    Abstract With the development of sharded blockchains, high cross-shard rates and load imbalance have emerged as major challenges. Account partitioning based on hashing and real-time load faces the issue of high cross-shard rates. Account partitioning based on historical transaction graphs is effective in reducing cross-shard rates but suffers from load imbalance and limited adaptability to dynamic workloads. Meanwhile, because of the coupling between consensus and execution, a target shard must receive both the partitioned transactions and the partitioned accounts before initiating consensus and execution. However, we observe that transaction partitioning and subsequent consensus do not require… More >

  • Open Access

    ARTICLE

    FedCCM: Communication-Efficient Federated Learning via Clustered Client Momentum in Non-IID Settings

    Hang Wen1,2, Kai Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072909 - 12 January 2026

    Abstract Federated learning often experiences slow and unstable convergence due to edge-side data heterogeneity. This problem becomes more severe when edge participation rate is low, as the information collected from different edge devices varies significantly. As a result, communication overhead increases, which further slows down the convergence process. To address this challenge, we propose a simple yet effective federated learning framework that improves consistency among edge devices. The core idea is clusters the lookahead gradients collected from edge devices on the cloud server to obtain personalized momentum for steering local updates. In parallel, a global momentum… More > Graphic Abstract

    FedCCM: Communication-Efficient Federated Learning via Clustered Client Momentum in Non-IID Settings

  • Open Access

    ARTICLE

    An Anonymous Authentication and Key Exchange Protocol for UAVs in Flying Ad-Hoc Networks

    Yanan Liu1,*, Suhao Wang1,*, Lei Cao1, Pengfei Wang1, Zheng Zhang2, Shuo Qiu1, Ruchan Dong1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072710 - 12 January 2026

    Abstract Unmanned Aerial Vehicles (UAVs) in Flying Ad-Hoc Networks (FANETs) are widely used in both civilian and military fields, but they face severe security, trust, and privacy vulnerabilities due to their high mobility, dynamic topology, and open wireless channels. Existing security protocols for Mobile Ad-Hoc Networks (MANETs) cannot be directly applied to FANETs, as FANETs require lightweight, high real-time performance, and strong anonymity. The current FANETs security protocol cannot simultaneously meet the requirements of strong anonymity, high security, and low overhead in high dynamic and resource-constrained scenarios. To address these challenges, this paper proposes an Anonymous Authentication… More >

  • Open Access

    ARTICLE

    An Improved PID Controller Based on Artificial Neural Networks for Cathodic Protection of Steel in Chlorinated Media

    José Arturo Ramírez-Fernández1, Henevith G. Méndez-Figueroa1, Sebastián Ossandón2,*, Ricardo Galván-Martínez3, Miguel Ángel Hernández-Pérez3, Ricardo Orozco-Cruz3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072707 - 12 January 2026

    Abstract In this study, artificial neural networks (ANNs) were implemented to determine design parameters for an impressed current cathodic protection (ICCP) prototype. An ASTM A36 steel plate was tested in 3.5% NaCl solution, seawater, and NS4 using electrochemical impedance spectroscopy (EIS) to monitor the evolution of the substrate surface, which affects the current required to reach the protection potential (Eprot). Experimental data were collected as training datasets and analyzed using statistical methods, including box plots and correlation matrices. Subsequently, ANNs were applied to predict the current demand at different exposure times, enabling the estimation of electrochemical More >

  • Open Access

    ARTICLE

    CCLNet: An End-to-End Lightweight Network for Small-Target Forest Fire Detection in UAV Imagery

    Qian Yu1,2, Gui Zhang2,*, Ying Wang1, Xin Wu2, Jiangshu Xiao2, Wenbing Kuang1, Juan Zhang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072172 - 12 January 2026

    Abstract Detecting small forest fire targets in unmanned aerial vehicle (UAV) images is difficult, as flames typically cover only a very limited portion of the visual scene. This study proposes Context-guided Compact Lightweight Network (CCLNet), an end-to-end lightweight model designed to detect small forest fire targets while ensuring efficient inference on devices with constrained computational resources. CCLNet employs a three-stage network architecture. Its key components include three modules. C3F-Convolutional Gated Linear Unit (C3F-CGLU) performs selective local feature extraction while preserving fine-grained high-frequency flame details. Context-Guided Feature Fusion Module (CGFM) replaces plain concatenation with triplet-attention interactions to… More >

  • Open Access

    ARTICLE

    BearFusionNet: A Multi-Stream Attention-Based Deep Learning Framework with Explainable AI for Accurate Detection of Bearing Casting Defects

    Md. Ehsanul Haque1, Md. Nurul Absur2, Fahmid Al Farid3, Md Kamrul Siam4, Jia Uddin5,*, Hezerul Abdul Karim3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071771 - 12 January 2026

    Abstract Manual inspection of onba earing casting defects is not realistic and unreliable, particularly in the case of some micro-level anomalies which lead to major defects on a large scale. To address these challenges, we propose BearFusionNet, an attention-based deep learning architecture with multi-stream, which merges both DenseNet201 and MobileNetV2 for feature extraction with a classification head inspired by VGG19. This hybrid design, figuratively beaming from one layer to another, extracts the enormity of representations on different scales, backed by a pre-preprocessing pipeline that brings defect saliency to the fore through contrast adjustment, denoising, and edge… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Hybrid Framework for Secure and Scalable Electronic Health Record Management in In-Patient Follow-Up Tracking

    Ahsan Habib Siam1, Md. Ehsanul Haque1, Fahmid Al Farid2, Anindita Sutradhar3, Jia Uddin4,*, Sarina Mansor2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069718 - 12 January 2026

    Abstract As healthcare systems increasingly embrace digitalization, effective management of electronic health records (EHRs) has emerged as a critical priority, particularly in inpatient settings where data sensitivity and real-time access are paramount. Traditional EHR systems face significant challenges, including unauthorized access, data breaches, and inefficiencies in tracking follow-up appointments, which heighten the risk of misdiagnosis and medication errors. To address these issues, this research proposes a hybrid blockchain-based solution for securely managing EHRs, specifically designed as a framework for tracking inpatient follow-ups. By integrating QR code-enabled data access with a blockchain architecture, this innovative approach enhances… More >

  • Open Access

    ARTICLE

    Advanced Meta-Heuristic Optimization for Accurate Photovoltaic Model Parameterization: A High-Accuracy Estimation Using Spider Wasp Optimization

    Sarah M. Alhammad1, Diaa Salama AbdElminaam2,3,*, Asmaa Rizk Ibrahim4, Ahmed Taha2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069263 - 12 January 2026

    Abstract Accurate parameter extraction of photovoltaic (PV) models plays a critical role in enabling precise performance prediction, optimal system sizing, and effective operational control under diverse environmental conditions. While a wide range of metaheuristic optimisation techniques have been applied to this problem, many existing methods are hindered by slow convergence rates, susceptibility to premature stagnation, and reduced accuracy when applied to complex multi-diode PV configurations. These limitations can lead to suboptimal modelling, reducing the efficiency of PV system design and operation. In this work, we propose an enhanced hybrid optimisation approach, the modified Spider Wasp Optimization… More >

  • Open Access

    ARTICLE

    Improving Online Restore Performance of Backup Storage via Historical File Access Pattern

    Ruidong Chen1,#, Guopeng Wang2,#, Jingyuan Yang1, Ziyu Wang1, Fang Zou1, Jia Sun1, Xingpeng Tang1, Ting Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.068878 - 12 January 2026

    Abstract The performance of data restore is one of the key indicators of user experience for backup storage systems. Compared to the traditional offline restore process, online restore reduces downtime during backup restoration, allowing users to operate on already restored files while other files are still being restored. This approach improves availability during restoration tasks but suffers from a critical limitation: inconsistencies between the access sequence and the restore sequence. In many cases, the file a user needs to access at a given moment may not yet be restored, resulting in significant delays and poor user… More >

  • Open Access

    REVIEW

    Salivary Biomarkers and Their Link to Oncogenic Signaling Pathways in Oral Squamous Cell Carcinoma: Diagnostic and Translational Perspectives in a Narrative Review

    Wen-Shou Tan1,#, Hsuan Kuo2,#, Chang-Ge Jiang1, Mei-Han Lu1, Yi-He Lu1, Yung-Li Wang1, Ching-Shuen Wang1, Thi Thuy Tien Vo3, I-Ta Lee1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070871 - 30 December 2025

    Abstract This narrative review examines recent advances in salivary biomarkers for oral squamous cell carcinoma (OSCC), a major subtype of oral cancer with persistently low five-year survival rates due to delayed diagnosis. Saliva has emerged as a noninvasive diagnostic medium capable of reflecting both local tumor activity and systemic physiological changes. Various salivary biomarkers, including microRNAs, cytokines, proteins, metabolites, and exosomes, have been linked to oncogenic signaling pathways involved in tumor progression, immune modulation, and therapeutic resistance. Advances in quantitative polymerase chain reaction, mass spectrometry, and next-generation sequencing have enabled comprehensive biomarker profiling, while point-of-care detection More >

Displaying 1-10 on page 1 of 1400. Per Page