Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13,004)
  • Open Access

    ARTICLE

    Effect of Danshen on the Zero-Stress State of Rat's Abdominal Aorta

    Hui Han, David C. C. Lam, Wei Huang†,‡

    Molecular & Cellular Biomechanics, Vol.9, No.4, pp. 295-308, 2012, DOI:10.3970/mcb.2012.009.295

    Abstract The objective of our study was to study the effect of danshen, a Chinese herbal medicine known to prevent hypertension, on the zero-stress state of rat's abdominal aorta. The zero-stress state of a blood vessel represents the release of residual stress on the vessel wall, and is the basic configuration of blood vessel affected solely by intrinsic parameters. At the in vivo state, the rat's abdominal aorta was subjected to blood pressure and flow and longitudinal stress. After dissecting from the abdominal aorta, the aortic specimens were cut into small rings at no-load state, in which the internal pressure, external… More >

  • Open Access

    ARTICLE

    Stochastic Simulation of Human Pulmonary Blood Flow and Transit Time Frequency Distribution Based on Anatomic and Elasticity Data

    Wei Huang, Jun Shi, R. T. Yen†,‡

    Molecular & Cellular Biomechanics, Vol.9, No.4, pp. 269-284, 2012, DOI:10.3970/mcb.2012.009.269

    Abstract The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation… More >

  • Open Access

    ARTICLE

    Partial Contact Indentation Tonometry for Measurement of Corneal Properties-Independent Intraocular Pressure

    Match W L Ko, Leo K K Leung, David C C Lam∗,†

    Molecular & Cellular Biomechanics, Vol.9, No.4, pp. 251-268, 2012, DOI:10.3970/mcb.2012.009.251

    Abstract Inter-individual differences in corneal properties are ignored in existing methods for measuring intraocular pressure IOP, a primary parameter used in screening and monitoring of glaucoma. The differences in the corneal stiffness between individuals can be more than double and this difference would lead to IOP measurement errors up to 10 mmHg. In this study, an instrumented partial-contact indentation measurement and analysis method that can account for inter-individual corneal difference in stiffness is developed. The method was tested on 12 porcine eyes ex vivo and 7 rabbit eyes in vivo, and the results were compared to the controlled IOPs to determine… More >

  • Open Access

    ARTICLE

    Effect of Matrix on Cardiomyocyte Viscoelastic Properties in 2D Culture

    Sandra Deitch, Bruce Z. Gao, Delphine Dean

    Molecular & Cellular Biomechanics, Vol.9, No.3, pp. 227-250, 2012, DOI:10.3970/mcb.2012.009.227

    Abstract Cardiomyocyte phenotype changes significantly in 2D culture systems depending on the substrate composition and organization. Given the variety of substrates that are used both for basic cardiac cell culture studies and for regenerative medicine applications, there is a critical need to understand how the different matrices influence cardiac cell mechanics. In the current study, the mechanical properties of neonatal rat cardiomyocytes cultured in a subconfluent layer upon aligned and unaligned collagen and fibronectin matrices were assessed over a two week period using atomic force microscopy. The elastic modulus was estimated by fitting the Hertz model to force curve data and… More >

  • Open Access

    ARTICLE

    Tumor Growth Modeling from the Perspective of Multiphase Porous Media Mechanics

    G. Sciumè∗,†, S.E. Shelton, W.G. Gray, C.T. Miller, F. Hussain§,¶, M. Ferrari, P. Decuzzi, B.A. Schrefler∗,¶

    Molecular & Cellular Biomechanics, Vol.9, No.3, pp. 193-212, 2012, DOI:10.3970/mcb.2012.009.193

    Abstract Multiphase porous media mechanics is used for modeling tumor growth, using governing equations obtained via the Thermodynamically Constrained Averaging Theory (TCAT). This approach incorporates the interaction of more phases than legacy tumor growth models. The tumor is treated as a multiphase system composed of an extracellular matrix, tumor cells which may become necrotic depending on nutrient level and pressure, healthy cells and an interstitial fluid which transports nutrients. The governing equations are numerically solved within a Finite Element framework for predicting the growth rate of the tumor mass, and of its individual components, as a function of the initial tumor-to-healthy… More >

  • Open Access

    REVIEW

    The Three Filament Model of Skeletal Muscle Stability and Force Production

    Walter Herzog, Tim Leonard, Venus Joumaa, Michael DuVall§, Appaji Panchangam

    Molecular & Cellular Biomechanics, Vol.9, No.3, pp. 175-192, 2012, DOI:10.3970/mcb.2012.009.175

    Abstract Ever since the 1950s, muscle force regulation has been associated with the cross-bridge interactions between the two contractile filaments, actin and myosin. This gave rise to what is referred to as the "two-filament sarcomere model". This model does not predict eccentric muscle contractions well, produces instability of myosin alignment and force production on the descending limb of the force-length relationship, and cannot account for the vastly decreased ATP requirements of actively stretched muscles. Over the past decade, we and others, identified that a third myofilament, titin, plays an important role in stabilizing the sarcomere and the myosin filament. Here, we… More >

  • Open Access

    ARTICLE

    Effect of Age-Stiffening Tissues and Intraocular Pressure on Optic Nerve Damages

    Leo KK Leung, Match WL Ko, David CC Lam

    Molecular & Cellular Biomechanics, Vol.9, No.2, pp. 157-174, 2012, DOI:10.3970/mcb.2012.009.157

    Abstract Age-stiffening of ocular tissues is statistically linked to glaucoma in the elderly. In this study, the effects of age-stiffening on the lamina cribrosa, the primary site of glaucomatous nerve damages, were modeled using computational finite element analysis. We showed that glaucomatous nerve damages and peripheral vision loss behavior can be phenomenologically modeled by shear-based damage criterion. Using this damage criterion, the potential vision loss for 30 years old with mild hypertension of 25mmHg intraocular pressure (IOP) was estimated to be 4%. When the IOP was elevated to 35mmHg, the potential vision loss rose to 45%; and age-stiffening from 35 to… More >

  • Open Access

    ARTICLE

    IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 77-94, 2012, DOI:10.3970/mcb.2012.009.077

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high blood pressure on stress, strain,… More >

  • Open Access

    ARTICLE

    The Effect of Collagenase on the Critical Buckling Pressure of Arteries*

    Ricky Martinez, Hai-Chao Han

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 55-76, 2012, DOI:10.3970/mcb.2012.009.055

    Abstract The stability of arteries is essential to normal arterial functions and loss of stability can lead to arterial tortuosity and kinking. Collagen is a main extracellular matrix component that modulates the mechanical properties of arteries and collagen degradation at pathological conditions weakens the mechanical strength of arteries. However, the effects of collagen degradation on the mechanical stability of arteries are unclear. The objective of this study was to investigate the effects of collagen degradation on the critical buckling pressure of arteries. Arterial specimens were subjected to pressurized inflation testing and fitted with nonlinear thick-walled cylindrical model equations to determine their… More >

  • Open Access

    ARTICLE

    Transient Bioheat Simulation of the Laser-Tissue Interaction in Human Skin Using Hybrid Finite Element Formulation

    Ze-Wei Zhang*, Hui Wang, Qing-Hua Qin∗,‡

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 31-54, 2012, DOI:10.3970/mcb.2012.009.031

    Abstract This paper presents a hybrid finite element model for describing quantitatively the thermal responses of skin tissue under laser irradiation. The model is based on the boundary integral-based finite element method and the Pennes bioheat transfer equation. In this study, temporal discretization of the bioheat system is first performed and leads to the well-known modified Helmholtz equation. A radial basis function approach and the boundary integral based finite element method are employed to obtain particular and homogeneous solutions of the laser-tissue interaction problem. In the boundary integral based finite element formulation, two independent fields are assumed: intra-element field and frame… More >

Displaying 10991-11000 on page 1100 of 13004. Per Page