Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Effects of cadmium on root growth, cell division and micronuclei formation in root tip cells of Allium cepa var. agrogarum L.

    Wang QL, LT Zhang, JH Zou, DH Liu, JY Yue

    Phyton-International Journal of Experimental Botany, Vol.83, pp. 291-298, 2014, DOI:10.32604/phyton.2014.83.291

    Abstract The effects of various cadmium (Cd) concentrations (10, 50 and 100 μM) on root growth, cell division and micronuclei formation in root tip cells of Allium cepa var. agrogarum L. were investigated to better understand the processes of Cd-induced apoptosis. The results indicated that 10 μM of Cd had an obviously passive influence on root growth during the 24 h treatment, and that the influence was even more serious with increasing Cd concentrations and duration of treatments. The mitotic index decreased with increasing Cd concentration and duration of treatments. Cadmium induced c-mitosis, chromosome bridges, chromosome stickiness and micronuclei. The frequency… More >

  • Open Access

    ARTICLE

    Autophagy, apoptosis and organelle features during cell exposure to cadmiumč

    Cristiane Dos Santos VERGILIO, Edésio José Tenório De MELO*

    BIOCELL, Vol.37, No.2, pp. 45-54, 2013, DOI:10.32604/biocell.2013.37.045

    Abstract Cadmium (Cd) induces several effects in different tissues, but our knowledge of the toxic effects on organelles is insufficient. To observe the progression of Cd effects on organelle structure and function, HuH-7 cells (human hepatic carcinoma cell line) were exposed to CdCl2 in increasing concentrations (1 μM – 20 μM) and exposure times (2 h – 24 h). During Cd treatment, the cells exhibited a progressive decrease in viability that was both time- and dose-dependent. Cd treated cells displayed progressive morphological changes that included cytoplasm retraction and nuclear condensation preceding a total loss of cell adhesion. Treatment with 10 μM… More >

  • Open Access

    ARTICLE

    Adverse effects induced by chromium VI, cadmium and arsenic exposure on hypothalamus-pituitary physiology

    Jimena P. CABILLA, Sonia A. RONCHETTI, Beatriz H. DUVILANSKI*

    BIOCELL, Vol.40, No.1, pp. 15-18, 2016, DOI:10.32604/biocell.2016.40.015

    Abstract Environmental contamination with some metalloids and heavy metals (M/HM) raises concern due to well known adverse effects on health. Among these pollutants, chromium VI (Cr VI), cadmium (Cd) and arsenic (As) are frequently present as a result of natural sources or due to industrial activities. They are able to easily enter the organism and negatively affect many organs and systems. In vivo (exposure to Cr VI, Cd or As through drinking water) and in vitro experiments (primary pituitary cell cultures) were performed in male Wistar rats to address their actions on hypothalamus-pituitary axis. All the M/HM accumulated in hypothalamus and… More >

  • Open Access

    ARTICLE

    Effects of Melatonin on Growth, Physiology and Gene Expression in Rice Seedlings Under Cadmium Stress

    Xiachen Lv1,#, Yunxia Fang1,#, Lantian Zhang1, Weiyi Zhang1, Ling Xu1, Jingjin Han1, Bailing Jin2, Xian Zhang1, Xiaoqin Zhang1,*, Dawei Xue1,*

    Phyton-International Journal of Experimental Botany, Vol.88, No.2, pp. 91-100, 2019, DOI:10.32604/phyton.2019.06622

    Abstract Melatonin (MLT) is a hormonal substance found in many organisms and can improve plant stress resistance. In this study, the japonica rice variety Y32 and indica rice variety NJ6 were cultivated in hydroponics under different concentrations of CdCl2 at the two-leaf stage. The growth, physiological and biochemical responses of the seedlings and the expression of cadmium (Cd)-related genes under exogenous melatonin (MLT) treatment were assessed. The results indicated that Cd stress destroyed the dynamic balance between reactive oxygen species (ROS) production and removal, resulting in ROS accumulation, membrane lipid peroxidation, and impaired growth and development. Following the application of exogenous… More >

  • Open Access

    ARTICLE

    Performance Comparison of Chemically Modified Sugarcane Bagasse for Removing Cd(II) in Water Environment

    Manh Khai Nguyen1,*, Minh Trang Hoang1,2, Thi Thuy Pham1, Bart Van der Bruggen2

    Journal of Renewable Materials, Vol.7, No.5, pp. 415-428, 2019, DOI:10.32604/jrm.2019.04371

    Abstract This paper evaluates the adsorption capacity of chemically sugarcane bagasses with sodium hydroxide (SHS), citric acid (CAS), tartaric acid (TAS) and unmodified sugarcane bagasse (SB) for cadmium adsorption in water environment. The results prove adsorption capacity for Cd (II) increases after chemical modification and the adsorption fits perfectly with the Langmuir isotherm. CAS had the highest maximum adsorption capacity of 45.45 mg/g followed by TAS with 38.46 mg/g and SHS with 29.41 at optimum pH 5.0 and 120 minutes equilibrium time while 1 g SB removed 18.8 mg Cd (II) in the same conditions. The kinetics study of the process… More >

  • Open Access

    ARTICLE

    Synthesis of Cadmium Sulfi de Quantum Dots with Simultaneous Desulfurization of Kerosene Oil

    Shyamalima Sharma, Pronob Gogoi, Bhaskar Jyoti Saikia, Swapan K. Dolui*

    Journal of Renewable Materials, Vol.4, No.2, pp. 158-162, 2016, DOI:10.7569/JRM.2015.634116

    Abstract Cadmium sulfi de (CdS) quantum dots (QDs) were synthesized by a standard hydrothermal method with simultaneous desulfurization of kerosene oil. Sulfur containing kerosene oil was treated with cadmium chloride (CdCl2) in the presence of sodium hydroxide (NaOH) at 120 °C for 1.5 to 5 h. CdS was formed and sulfur content of oil gradually decreased. Thus, desulfurization of the oil occurred with the formation of the CdS QDs. The concentration of sulfur decreased to a minimum of 0.055% after 5 h of the reaction. In addition, the particle size of QDs increased from 5.4 nm to 8.1 nm as the… More >

  • Open Access

    ARTICLE

    Use of Rotating Magnetic Field for Selenium Impurity Transport in Zone Refining of Tellurium and Cadmium

    J. Roszmann1, Y.C. Liu1, S. Dost1,2, B. Lent1, S. Grenier3, N. Audet3

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.3, pp. 231-244, 2009, DOI:10.3970/fdmp.2009.005.231

    Abstract The article presents the results of a combined numerical and experimental study of the effect of rotating magnetic field on impurity transport in a zone refining system. An impurity (selenium) with a segregation coefficient close to unity was targeted. The three-zone system previously developed was used for experiments and numerical simulations. The numerical simulations were performed for tellurium (Te) and cadmium (Cd) molten zones, but the experiments could only be carried out for the Te-system. More >

Displaying 21-30 on page 3 of 27. Per Page