Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    REVIEW

    Promising roles of vitamin D receptor and APRO family proteins for the development of cancer stem cells targeted malignant tumor therapy

    MOEKA NAKASHIMA, NAOKO SUGA, AKARI FUKUMOTO, SAYURI YOSHIKAWA, SATORU MATSUDA*

    Oncology Research, Vol.33, No.5, pp. 1007-1017, 2025, DOI:10.32604/or.2025.059657 - 18 April 2025

    Abstract Malignant tumors are heterogeneous diseases characterized by uncontrolled cell proliferation, invasion, metastasis, and/or recurrence of their malignancies. In particular, cancer stem cells (CSCs) within these tumors might be responsible for the property of invasiveness and/or therapies-resistance. CSCs are a self-renewing, awfully tumorigenic subpopulation of cancer cells, which are notorious for strong chemoresistance and are frequently responsible the aggravated invasion, metastasis, and/or recurrence. Developing targeting therapies against CSCs, therefore, may be deliberated a more encouraging mission for the greater cancer therapy. Innovation for a more potent anti-CSC treatment has been required as soon as possible.… More > Graphic Abstract

    Promising roles of vitamin D receptor and APRO family proteins for the development of cancer stem cells targeted malignant tumor therapy

  • Open Access

    REVIEW

    Targeting MDM2-p53 interaction for breast cancer therapy

    AMJAD YOUSUF1, NAJEEB ULLAH KHAN2,*

    Oncology Research, Vol.33, No.4, pp. 851-861, 2025, DOI:10.32604/or.2025.058956 - 19 March 2025

    Abstract Breast cancer is a significant global concern, with limited effective treatment options. Therefore, therapies with high efficacy and low complications, unlike the existing chemotherapies, are urgently required. To address this issue, advances have been made in therapies targeting molecular pathways related to the murine double minute 2 proto-oncogene (MDM2)-tumor proteinp53 (TP53) interaction. This review aims to investigate the efficacy of MDM2 inhibition in restoring TP53 activity in breast cancer cells, as evidenced by clinical studies, reviews, and trials. TP53 is a tumor suppressor and MDM2 facilitates proteasomal degradation of TP53. MDM2 and TP53 activity More > Graphic Abstract

    Targeting MDM2-p53 interaction for breast cancer therapy

  • Open Access

    REVIEW

    p53: A player in the tumor microenvironment

    SHUANG ZHAO1,#, HONGYONG WEN2,#, BAIQI WANG2, QINGLIN XIONG1, LANXIN LI1, AILAN CHENG1,*

    Oncology Research, Vol.33, No.4, pp. 795-810, 2025, DOI:10.32604/or.2025.057317 - 19 March 2025

    Abstract Approximately half of all cancers have p53 inactivating mutations, in addition to which most malignancies inactivate the p53 pathway by increasing p53 inhibitors, decreasing p53 activators, or inactivating p53 downstream targets. A growing number of researches have demonstrated that p53 can influence tumor progression through the tumor microenvironment (TME). TME is involved in the process of tumor development and metastasis and affects the clinical prognosis of patients. p53 participates in host immunity and engages in the immune landscape of the TME, but the specific mechanisms remain to be investigated. This review briefly explores the More >

  • Open Access

    REVIEW

    Biomarkers for predicting bladder cancer therapy response

    IOANA MARIA MIHAI1, GANG WANG1,2,*

    Oncology Research, Vol.33, No.3, pp. 533-547, 2025, DOI:10.32604/or.2024.055155 - 28 February 2025

    Abstract The advent of precision medicine has underscored the importance of biomarkers in predicting therapy response for bladder cancer, a malignancy marked by considerable heterogeneity. This review critically examines the current landscape of biomarkers to forecast treatment outcomes in bladder cancer patients. We explore a range of biomarkers, including genetic, epigenetic, proteomic, and transcriptomic indicators, from multiple sample sources, including urine, tumor tissue and blood, assessing their efficacy in predicting responses to chemotherapy, immunotherapy, and targeted therapies. Despite promising developments, the translation of these biomarkers into clinical practice faces significant challenges, such as variability in biomarker More >

  • Open Access

    REVIEW

    The diverse functions and therapeutic implications of cancer-associated fibroblasts in colorectal cancer

    ZEYIN LAI1, HANGYUAN ZHAO1, HONG DENG1,2,*

    BIOCELL, Vol.48, No.11, pp. 1569-1578, 2024, DOI:10.32604/biocell.2024.053983 - 07 November 2024

    Abstract In the development of colorectal cancer (CRC), cancer-associated fibroblasts (CAFs) play a pivotal role in establishing tumor-permissive extracellular matrix structures, angiogenesis, and modulating the immune status of the tumor microenvironment (TME), thereby influencing tumor metastasis and resistance to radiotherapy and chemotherapy. The pleiotropic effects of CAFs in the TME may be attributed to the heterogeneous origin and high plasticity of their population. Given the specificity of CAFs, they provide a variety of potential target molecules for future CRC treatment, which may play an indispensable role in CRC therapeutic strategies. This review summarizes the origin of More >

  • Open Access

    REVIEW

    MicroRNAs modulation in lung cancer: exploring dual mechanisms and clinical prospects

    SHAHID HUSSAIN1,*, HABIB BOKHARI1, XINGXING FAN2, SHAUKAT IQBAL MALIK3, SUNDAS IJAZ1, MUHAMMAD ADNAN SHEREEN4, AIMAN FATIMA3

    BIOCELL, Vol.48, No.3, pp. 403-413, 2024, DOI:10.32604/biocell.2024.044801 - 15 March 2024

    Abstract The global incidence of lung cancer is marked by a considerably elevated mortality rate. MicroRNAs (miRNAs) exert pivotal influence in the intricate orchestration of gene regulation, and their dysregulation can precipitate dire consequences, notably cancer. Within this context, miRNAs encapsulated in exosomes manifest a diversified impact on the landscape of lung cancer, wherein their actions may either foster angiogenesis, cell proliferation, and metastasis, or counteract these processes. This comprehensive review article discerns potential targets for the prospective development of therapeutic agents tailored for lung cancer. Tumor-suppressive miRNAs, such as miR-204, miR-192, miR-30a, miR-34a, miR-34b, miR-203,… More >

  • Open Access

    ARTICLE

    Leveraging diverse cell-death patterns to predict the clinical outcome of immune checkpoint therapy in lung adenocarcinoma: Based on muti-omics analysis and vitro assay

    HONGYUAN LIANG1,#, YANQIU LI2,#, YONGGANG QU3, LINGYUN ZHANG4,*

    Oncology Research, Vol.32, No.2, pp. 393-407, 2024, DOI:10.32604/or.2023.031134 - 28 December 2023

    Abstract Advanced LUAD shows limited response to treatment including immune therapy. With the development of sequencing omics, it is urgent to combine high-throughput multi-omics data to identify new immune checkpoint therapeutic response markers. Using GSE72094 (n = 386) and GSE31210 (n = 226) gene expression profile data in the GEO database, we identified genes associated with lung adenocarcinoma (LUAD) death using tools such as “edgeR” and “maftools” and visualized the characteristics of these genes using the “circlize” R package. We constructed a prognostic model based on death-related genes and optimized the model using LASSO-Cox regression methods.… More >

  • Open Access

    REVIEW

    Therapeutic application of mesenchymal stem cells-derived extracellular vesicles in colorectal cancer

    MOHADESEH NEMATI1, YOUSEF RASMI1, JAFAR REZAIE2,*

    BIOCELL, Vol.47, No.3, pp. 455-464, 2023, DOI:10.32604/biocell.2023.025603 - 03 January 2023

    Abstract Colorectal cancer (CRC) is the third most common cancer and the leading cause of cancer death globally. Resistance to therapy is a challenge for CRC treatment. Mesenchymal stem cells (MSCs) have become one of the furthermost effective approaches for tumor treatment due to their specific feature; however, their therapeutic function is controversial. Recently, extracellular vesicles (EVs) derived from MSCs (MSCs-EVs) have attracted extensive research attention due to their promising role in CRC treatment. EVs are cell-derived vesicles that transfer different biomolecules between cells, contributing to intracellular communication. MSCs-EVs can suppress CRC by delivering therapeutic agents… More >

  • Open Access

    REVIEW

    The Current Status of Chlorin e6-Based Nanoscale Delivery Systems for Cancer Therapy

    Zhengyi Li1,2,3, Lihua Qiu1,2,3,*

    Oncologie, Vol.23, No.4, pp. 515-531, 2021, DOI:10.32604/oncologie.2021.019856 - 31 December 2021

    Abstract Improving the effectiveness of cancer treatment has become a central concern for the public. In recent years, in order to maximize the efficiency of cancer treatment, photodynamic therapy (PDT) and sonodynamic therapy (SDT) have received widespread attention. Chlorin e6 (Ce6) is a fluorescent dye with strong optical properties and excellent photoconversion efficiency under near-infrared light irradiation, which has been widely used in PDT in recent decades due to its superior antitumor ability. Of note, Ce6 can be used as a sonosensitizer for SDT, which generates large amounts of reactive oxygen species (ROS) for tumor treatment More >

Displaying 1-10 on page 1 of 9. Per Page