Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (310)
  • Open Access

    ARTICLE

    Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response

    Shiwei Su1,2, Guangyong Hu2, Xianghua Li3, Xin Li2, Wei Xiong2,*

    Energy Engineering, Vol.120, No.10, pp. 2343-2368, 2023, DOI:10.32604/ee.2023.028500

    Abstract As new power systems and dual carbon policies develop, virtual power plant cluster (VPPC) provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems. To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant, a multi-virtual power plant (VPP) electricity-carbon interaction optimal scheduling model considering integrated demand response (IDR) is proposed. Firstly, a multi-VPP electricity-carbon interaction framework is established. The interaction of electric energy and carbon quotas can realize energy complementarity, reduce energy waste and promote low-carbon operation. Secondly, in order to coordinate the multiple types of energy and… More > Graphic Abstract

    Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response

  • Open Access

    PROCEEDINGS

    Simulation of Reheating Furnace for Steel Billets by a Meshless Method

    Qingguo Liu1,2, Umut Hanoglu1,2, Božidar Šarler1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09609

    Abstract A simulation of reheating furnace in a steel production line where the steel billets are heated from room temperature up to 1200 ˚C, is carried out using a novel meshless solution procedure. The reheating of the steel billets before the continuous hot-rolling process should be employed to dissolve alloying elements as much as possible and redistribute the carbon. In this work, governing equations are solved by the local radial basis function collocation method (LRBFCM) in a strong form with explicit time-stepping. The solution of the diffusion equations for the temperature and carbon concentration fields is formulated on a twodimensional slice.… More >

  • Open Access

    PROCEEDINGS

    Tensile Properties and Microscopic Mechanism of Carbon Nanotube/Graphene Foam Materials

    Shuai Wang1,*, Lihong Liang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09163

    Abstract Compared to pure carbon nanotube (CNT) foam (CF) and pure graphene foam (GrF), the CNT/graphene composite foam show enhanced mechanical properties, using coarse-grained molecular dynamics method, the tensile and compressive properties and corresponding deformation mechanism of several typical CNT/graphene composite foams were studied. The CNT coating could enhance the bending resistance of graphene, based on the CNT-coated graphene flakes, the CNT-coated graphene foam (CCGF) is constructed, which shows better compressive modulus due to the enhanced bending resistance of CNT-coated graphene flakes compared to graphene in pure GrF [1]. CNT can enhance the mechanical properties of graphene foams not only by… More >

  • Open Access

    PROCEEDINGS

    Molecular Simulation of Multiphase Interface Characteristics and Microscale Flow Mechanisms of Oil and Brine in Carbonate Reservoir

    Zheng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09141

    Abstract Pore structures of carbonate reservoirs are complicated leading to the indistinguishable two-phase flow mechanisms of oil and brine. This work from the molecular perspective investigates the interfacial tension of oil-brine two-phase system, the contact angle of oil-brine-carbonatite three-phase system, as well as the microscale flow mechanisms of oil and brine in carbonate nanopores, especially focusing on the effects of ion species, salinity, and carbonate surface. The following conclusions can be drawn. (1) Oil-brine interfacial tension increases with salinity for the same ion species, and increases in the order of KCl, NaCl, CaCl2 and MgCl2 for the same salinity. The cation… More >

  • Open Access

    PROCEEDINGS

    GPU-Accelerated Numerical Modeling of Hypervelocity Impacts on CFRP Using SPH

    Yao Lu1, Jianyu Chen2, Dianlei Feng3,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010004

    Abstract CFRPs (carbon fiber reinforced plastics), as a kind of fiber-reinforced plastic, present various advantages over traditional materials regarding the specific strength, stiffness, and corrosion resistance. For this reason, CFRPs are widely used in the space industry, like satellites and space stations, which are easily subjected to the HVIs (hypervelocity impacts) threatened by space debris. In order to mitigate the damage of HVIs and protect the spatial structures, it is necessary to predict the HVI process on CFRPs. Smoothed particle hydrodynamics (SPH) method, as a mesh-free particle-based method, has been widely applied for modeling HVI problems due to its special advantages… More >

  • Open Access

    ARTICLE

    Synthesis of Carbon dots from Biomass Chenpi for the Detection of Hg2+

    Jun Xiang1,2,*, Xiaoqing Chen1, Qi Liu1, Huihua Jing2, Tongqiang Chen2, Wanli Tang2, Wenyang Xu2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3739-3750, 2023, DOI:10.32604/jrm.2023.028090

    Abstract Biomass-derived carbon dots (C-dots) are considered a very important carbon material in metal ion detection of their small environmental impact, simple preparation process, and relatively low cost. A green approach for synthesizing biomass-derived C-dots from Chenpi using a hydrothermal method without further processing is proposed in the present study. The as-synthesized C-dots show excellent fluorescence properties, superior resistance to UV irradiation photobleaching, and high photostability in salt-containing solutions. The C-dots were used in the form of label-free fluorescent probes for sensitively detecting Hg2+ selectively. The outcome relationship behaved linearly and was established based on a given range between 10–300 nM… More > Graphic Abstract

    Synthesis of Carbon dots from Biomass Chenpi for the Detection of Hg<sup>2+</sup>

  • Open Access

    ARTICLE

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

    Jiapeng Wang1, Bo Zhang1,*, Haoqiang Cheng1, Zhixiang Xu2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3595-3612, 2023, DOI:10.32604/jrm.2023.030005

    Abstract A new method of pretreatment of corn straw with Phanerochaete chrysosporium combined with pyrolysis was proposed to improve the quality of bio-oil. The characterization results demonstrated that microbial pretreatment was an effective method to decrease the lignin, which can achieve a maximum removal rate of 44.19%. Due to the destruction of biomass structure, the content of alkali metal and alkaline earth metal is reduced. Meanwhile, the depolymerized biomass structure created better pyrolysis conditions to promote the pyrolysis efficiency, increase the average decomposition rate of pyrolysis and reduce the residue. In fast pyrolysis, because of the enrichment of cellulose and the… More > Graphic Abstract

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER OF CARBON NANOFLUIDS OVER A VERTICAL PLATE

    Mahantesh M Nandeppanavara,*, S. Shakunthalab

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.27

    Abstract In this paper, the buoyancy effect on flow and heat transfer characteristics of nanofluid in presence of carbon nanotubes due to a vertical plate is investigated. The obtained nonlinear PDE’s are converted to the non-linear ordinary differential equations by applying the similarity transformations corresponding to the boundary conditions. These boundary value problems are solved numerically using fourth order Runge-kutta method together with the efficient shooting iteration scheme. The nature of the flow and heat transfer are plotted and discussed in detail. It is noticed that buoyancy effect is very useful in cooling the system and present results compared with previously… More >

  • Open Access

    ARTICLE

    STUDY ON FLOW AND TEMPERATURE BEHAVIOR OF CATALYTIC HONEYCOMB MONOLITH COMBUSTION FURNACE OF NATURAL GAS TO PROPERTIES OF GLAZED TILES

    Shihong Zhang* , Meixian Wei, Hui Yang

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-5, 2018, DOI:10.5098/hmt.11.20

    Abstract This article discussed flow and temperature characteristics of the catalytic combustion furnace based the combustion of lean natural gas-air mixtures in catalytic honeycomb monoliths. Catalytic combustion as a developing technology could make the pollutant emissions (CO and NOX) to near zero. Within the porous structure, the reactions then take place on the catalytic sites. A heterogeneous catalytic process includes more than one phase. Usually the catalyst is a solid and the reactants and products are in liquid or gaseous form. According to the applications of low- carbon catalytic combustion furnace, heating glazed tiles with pure solid texture, rich melodic style… More >

  • Open Access

    ARTICLE

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

    Jiahao Wang1, Jie Zhou2, Zhengping Zhao2,*, Feng Chen1, Mingqiang Zhong1

    Journal of Renewable Materials, Vol.11, No.8, pp. 3309-3332, 2023, DOI:10.32604/jrm.2023.027278

    Abstract Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane (PDMS) and polyacrylonitrile (PAN) as precursors via electrospinning and freeze-drying successfully. In contrast to conventional carbon covering Si-based anode materials, the C/SiOx structure is made up of PAN-C, a 3D carbon substance, and SiOx loading steadily on PAN-C. The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure. When employed as lithium-ion batteries (LIBs) anode materials, C/SiOx-1% composites were discovered to have an extremely high lithium storage capacity and good cycle performance. At a current density of 100 mA/g, its reversible capacity remained at… More > Graphic Abstract

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

Displaying 51-60 on page 6 of 310. Per Page