Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Development of a cell adhesion-based prognostic model for multiple myeloma: Insights into chemotherapy response and potential reversal of adhesion effects

    QIAN HU, MENGYAO WANG, JINJIN WANG, YALI TAO, TING NIU*

    Oncology Research, Vol.32, No.4, pp. 753-768, 2024, DOI:10.32604/or.2023.043647

    Abstract Multiple myeloma (MM) is a hematologic malignancy notorious for its high relapse rate and development of drug resistance, in which cell adhesion-mediated drug resistance plays a critical role. This study integrated four RNA sequencing datasets (CoMMpass, GSE136337, GSE9782, and GSE2658) and focused on analyzing 1706 adhesion-related genes. Rigorous univariate Cox regression analysis identified 18 key prognosis-related genes, including KIF14, TROAP, FLNA, MSN, LGALS1, PECAM1, and ALCAM, which demonstrated the strongest associations with poor overall survival (OS) in MM patients. To comprehensively evaluate the impact of cell adhesion on MM prognosis, an adhesion-related risk score (ARRS) model was constructed using Lasso… More >

  • Open Access

    REVIEW

    Surface activity of cancer cells: The fusion of two cell aggregates

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.1, pp. 15-25, 2023, DOI:10.32604/biocell.2023.023469

    Abstract A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body. Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated, the impact of physical interactions on cell spreading remains less understood. Cumulative effects of physical interactions exist as the interplay between various physical parameters such as (1) tissue surface tension, (2) viscoelasticity caused by collective cell migration, and (3) solid stress accumulated in the cell aggregate core region. This review aims to point out the role of these physical… More >

  • Open Access

    VIEWPOINT

    Implant surface features as key role on cell behavior

    RAFAEL SCAF DE MOLON1,2, MARTA MARIA ALVES PEREIRA2, ERICA DORIGATTI DE AVILA2

    BIOCELL, Vol.46, No.5, pp. 1151-1156, 2022, DOI:10.32604/biocell.2022.018026

    Abstract It has been recognized that physical and chemical properties of biomaterial surfaces mediate the quality of extracellular matrix (ECM) that may affect cell behaviors. In nature, ECM is a heterogeneous three-dimensional superstructure formed by three major components, glycosaminoglycan, glycoconjugate, and protein, that anchors cellular compartments in tissues and regulates the function and the behavior of cells. Changes in the biointerface alter the quality of ECM and morphology through cell surface receptors, which, in turn, enable it to trigger specific cell signaling and different cellular responses. In fact, a number of strategies have been used to improve the functionality of surfaces… More >

  • Open Access

    ARTICLE

    Cell adhesion in renal tubular epithelial cells: Biochemistry, biophysics or both

    CLAIRE ELIZABETH HILLS, ELEFTHERIOS SIAMANTOURAS, PAUL EDWARD SQUIRES*

    BIOCELL, Vol.46, No.4, pp. 937-940, 2022, DOI:10.32604/biocell.2022.018414

    Abstract Changes in cell-cell and cell-substrate adhesion markers are increasingly used to characterize disease onset and progression. However, these relationships depend on both the biochemical and molecular association between cells and between cells and their extracellular matrix, as well as the biophysical and mechanical properties orchestrated by cytoskeletal, membrane and matrix components. To fully appreciate the role of cell adhesion when determining normal physiology and the impact of disease on cellular function, it is important to consider both biochemical and biophysical attributes of the system being investigated. In this short viewpoint we reflect on our experiences assessing cell-cell and/or cell-matrix interactions… More >

  • Open Access

    VIEWPOINT

    New evidence for a role of Bisphenol A in cell integrity. Implications in the human population

    RAFAEL MORENO-GÓMEZ-TOLEDANO1,*, MARíA I. ARENAS2, ESPERANZA VÉLEZ-VÉLEZ3, RICARDO J. BOSCH1

    BIOCELL, Vol.46, No.2, pp. 305-308, 2022, DOI:10.32604/biocell.2022.017894

    Abstract Bisphenol A (BPA) is a xenoestrogen known for its implications for the endocrine systems and several other organs, including the kidneys. Recent renal studies have shown that BPA can induce alterations of the cytoskeleton and cell adhesion mechanisms such as a podocytopathy with proteinuria and hypertension, alterations involved in the progression of renal diseases. These data and the fact that BPA is known to be present in the urine of almost the entire population strongly suggest the critical need to reevaluate BPA exposures considered safe. More >

  • Open Access

    ARTICLE

    Poly (vinyl alcohol)/Graphene Nanocomposite Hydrogel Scaffolds for Control of Cell Adhesion

    Xiaodong Wang1,2, Meng Su2, Chuntai Liu2, Changyu Shen2, Xianhu Liu2,*

    Journal of Renewable Materials, Vol.8, No.1, pp. 89-99, 2020, DOI:10.32604/jrm.2020.08493

    Abstract Poly (vinyl alcohol) (PVA)/reduced graphene oxide (rGO) nanocomposites is prepared by the immersion of PVA/graphene oxide (GO) nanocomposites in the reducing agent aqueous solution. The PVA/graphene nanocomposites can be used as scaffold after treatment by chemical crosslinking agents. The surface hydrophilicity of the nanocomposite scaffolds decreased with the addition of GO or rGO by measuring the contact angles of scaffolds. The electrical conductivity of PVA/rGO nanocomposite scaffold increased with rGO content increased. The highest conductivity of PVA/rGO nanocomposite scaffolds with 10 wt% rGO could reach to 12.16 × 10−3 S/m. The NIH-3T3 fibroblasts attach and grow well on the surface… More >

  • Open Access

    ARTICLE

    Tissue expression of platelet endothelial cell adhesion molecule-1 at pre and postnatal murine development

    GRACIELA CRISTINA CALABRESE*, ROSA WAINSTOK**

    BIOCELL, Vol.28, No.3, pp. 251-258, 2004, DOI:10.32604/biocell.2004.28.251

    Abstract Endothelial cells, at the cell-cell borders, express PECAM-1, and have been implicated in vascular functions. The monoclonal antibody MEC 13.3 recognizes PECAM-1 molecule from mouse vessels and allows to analyze the ontogeny of mouse endothelium. At the present, little is known about the molecular basis of differentiation pathways of endothelial cells, that enables its morphological heterogeneity. The purpose of this study was to analyze the pattern of PECAM-1 expression, employing monoclonal antibody MEC 13.3, in cellular suspensions obtained from different mouse organs at pre and postnatal stages.
    Fluorescence activated cell sorter analysis showed a different profile of the glycoprotein… More >

  • Open Access

    ABSTRACT

    Fast Force Loading Disrupts Molecular Bond Stability in Human and Mouse Cell Adhesions

    Yunfeng Chen1,2,3,†,*, Jiexi Liao4,†, Zhou Yuan1, Kaitao Li4, Baoyu Liu4, Lining Arnold Ju4,5,6, Cheng Zhu1,2,4,5,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 97-97, 2019, DOI:10.32604/mcb.2019.07123

    Abstract Force-mediated molecular binding initiates numerous cellular activities such as cell adhesion, migration, and activation. Dynamic force spectroscopy (DFS) is widely used to examine molecular binding and cell mechano-signaling [1]. The rate of dissociation, off-rate, is an important attribute of molecular binding that reflects bond stability. Extensive DFS works have demonstrated that off-rates are a function of force magnitude, yielding signature bond behaviors like “catch bond” [2]. However, as a controversial topic of the field, different DFS assays, i.e., force-clamp and force-ramp assays, often yielded distinctive "off-rate vs. force" relations from the same molecular system [3]. Such discrepancies cast doubt on… More >

  • Open Access

    ARTICLE

    Shear Force at the Cell-Matrix Interface: Enhanced Analysis for Microfabricated Post Array Detectors

    Christopher A. Lemmon1,2, Nathan J. Sniadecki3, Sami Alom Ruiz1,3, John L. Tan, Lewis H. Romer2,4,5, Christopher S. Chen3,4

    Molecular & Cellular Biomechanics, Vol.2, No.1, pp. 1-16, 2005, DOI:10.3970/mcb.2005.002.001

    Abstract The interplay of mechanical forces between the extracellular environment and the cytoskeleton drives development, repair, and senescence in many tissues. Quantitative definition of these forces is a vital step in understanding cellular mechanosensing. Microfabricated post array detectors (mPADs) provide direct measurements of cell-generated forces during cell adhesion to extracellular matrix. A new approach to mPAD post labeling, volumetric imaging, and an analysis of post bending mechanics determined that cells apply shear forces and not point moments at the matrix interface. In addition, these forces could be accurately resolved from post deflections by using images of post tops and bases. Image… More >

  • Open Access

    ARTICLE

    Forced Dissociation of the Strand Dimer Interface between C-Cadherin Ectodomains

    M.V. Bayas1,1, K.Schulten2,2, D. Leckb,3,3

    Molecular & Cellular Biomechanics, Vol.1, No.2, pp. 101-112, 2004, DOI:10.3970/mcb.2004.001.101

    Abstract The force-induced dissociation of the strand dimer interface in C-cadherin has been studied using steered molecular dynamics simulations. The dissociation occurred, without domain unraveling, after the extraction of the conserved trypthophans (Trp2) from their respective hydrophobic pockets. The simulations revealed two stable positions for the Trp2 side chain inside the pocket. The most internal stable position involved a hydrogen bond between the ring Ne of Trp2 and the backbone carbonyl of Glu90. In the second stable position, the aromatic ring is located at the pocket entrance. After extracting the two tryptophans from their pockets, the complex exists in an intermediate… More >

Displaying 1-10 on page 1 of 13. Per Page