Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,221)
  • Open Access

    ARTICLE

    DCS-SOCP-SVM: A Novel Integrated Sampling and Classification Algorithm for Imbalanced Datasets

    Xuewen Mu*, Bingcong Zhao

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2143-2159, 2025, DOI:10.32604/cmc.2025.060739 - 16 April 2025

    Abstract When dealing with imbalanced datasets, the traditional support vector machine (SVM) tends to produce a classification hyperplane that is biased towards the majority class, which exhibits poor robustness. This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets. The proposed method first uses a biased second-order cone programming support vector machine (B-SOCP-SVM) to identify the support vectors (SVs) and non-support vectors (NSVs) in the imbalanced data. Then, it applies the synthetic minority over-sampling technique (SV-SMOTE) to oversample the support vectors of the minority class and uses the random under-sampling technique (NSV-RUS) multiple times More >

  • Open Access

    ARTICLE

    A Nature-Inspired AI Framework for Accurate Glaucoma Diagnosis

    Jahanzaib Latif 1, Ahsan Wajahat1, Alishba Tahir2, Anas Bilal3,*, Mohammed Zakariah4, Abeer Alnuaim4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 539-567, 2025, DOI:10.32604/cmes.2025.062301 - 11 April 2025

    Abstract Glaucoma, a leading cause of blindness, demands early detection for effective management. While AI-based diagnostic systems are gaining traction, their performance is often limited by challenges such as varying image backgrounds, pixel intensity inconsistencies, and object size variations. To address these limitations, we introduce an innovative, nature-inspired machine learning framework combining feature excitation-based dense segmentation networks (FEDS-Net) and an enhanced gray wolf optimization-supported support vector machine (IGWO-SVM). This dual-stage approach begins with FEDS-Net, which utilizes a fuzzy integral (FI) technique to accurately segment the optic cup (OC) and optic disk (OD) from retinal images, even More >

  • Open Access

    ARTICLE

    Predictive Analytics for Diabetic Patient Care: Leveraging AI to Forecast Readmission and Hospital Stays

    Saleh Albahli*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1095-1128, 2025, DOI:10.32604/cmes.2025.058821 - 11 April 2025

    Abstract Predicting hospital readmission and length of stay (LOS) for diabetic patients is critical for improving healthcare quality, optimizing resource utilization, and reducing costs. This study leverages machine learning algorithms to predict 30-day readmission rates and LOS using a robust dataset comprising over 100,000 patient encounters from 130 hospitals collected over a decade. A comprehensive preprocessing pipeline, including feature selection, data transformation, and class balancing, was implemented to ensure data quality and enhance model performance. Exploratory analysis revealed key patterns, such as the influence of age and the number of diagnoses on readmission rates, guiding the More >

  • Open Access

    ARTICLE

    MAD-ANET: Malware Detection Using Attention-Based Deep Neural Networks

    Waleed Khalid Al-Ghanem1, Emad Ul Haq Qazi2,*, Tanveer Zia2,3, Muhammad Hamza Faheem2, Muhammad Imran4, Iftikhar Ahmad5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1009-1027, 2025, DOI:10.32604/cmes.2025.058352 - 11 April 2025

    Abstract In the current digital era, new technologies are becoming an essential part of our lives. Consequently, the number of malicious software or malware attacks is rapidly growing. There is no doubt, the majority of malware attacks can be detected by most antivirus programs. However, such types of antivirus programs are one step behind malicious software. Due to these dilemmas, deep learning become popular in the detection and classification of malicious data. Therefore, researchers have significantly focused on finding solutions for malware attacks by analyzing malicious samples with the help of different techniques and models. In More >

  • Open Access

    ARTICLE

    Multiple Sclerosis Predictions and Sensitivity Analysis Using Robust Models

    Alex Kibet*, Gilbert Langat

    Journal of Intelligent Medicine and Healthcare, Vol.3, pp. 1-14, 2025, DOI:10.32604/jimh.2022.062824 - 04 April 2025

    Abstract Multiple Sclerosis (MS) is a disease that disrupts the flow of information within the brain. It affects approximately 1 million people in the US. And remains incurable. MS treatments can cause side effects and impact the quality of life and even survival rates. Based on existing research studies, we investigate the risks and benefits of three treatment options based on methylprednisolone (a corticosteroid hormone medication) prescribed in (1) high-dose, (2) low-dose, or (3) no treatment. The study currently prescribes one treatment to all patients as it has been proven to be the most effective on More >

  • Open Access

    ARTICLE

    XGBoost-Liver: An Intelligent Integrated Features Approach for Classifying Liver Diseases Using Ensemble XGBoost Training Model

    Sumaiya Noor1, Salman A. AlQahtani2, Salman Khan3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1435-1450, 2025, DOI:10.32604/cmc.2025.061700 - 26 March 2025

    Abstract The liver is a crucial gland and the second-largest organ in the human body and also essential in digestion, metabolism, detoxification, and immunity. Liver diseases result from factors such as viral infections, obesity, alcohol consumption, injuries, or genetic predispositions. Pose significant health risks and demand timely diagnosis and treatment to enhance survival rates. Traditionally, diagnosing liver diseases relied heavily on clinical expertise, often leading to subjective, challenging, and time-intensive processes. However, early detection is essential for effective intervention, and advancements in machine learning (ML) have demonstrated remarkable success in predicting various conditions, including Chronic Obstructive… More >

  • Open Access

    ARTICLE

    GACL-Net: Hybrid Deep Learning Framework for Accurate Motor Imagery Classification in Stroke Rehabilitation

    Chayut Bunterngchit1, Laith H. Baniata2, Mohammad H. Baniata3, Ashraf ALDabbas4, Mohannad A. Khair5, Thanaphon Chearanai6, Sangwoo Kang2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 517-536, 2025, DOI:10.32604/cmc.2025.060368 - 26 March 2025

    Abstract Stroke is a leading cause of death and disability worldwide, significantly impairing motor and cognitive functions. Effective rehabilitation is often hindered by the heterogeneity of stroke lesions, variability in recovery patterns, and the complexity of electroencephalography (EEG) signals, which are often contaminated by artifacts. Accurate classification of motor imagery (MI) tasks, involving the mental simulation of movements, is crucial for assessing rehabilitation strategies but is challenged by overlapping neural signatures and patient-specific variability. To address these challenges, this study introduces a graph-attentive convolutional long short-term memory (LSTM) network (GACL-Net), a novel hybrid deep learning model… More >

  • Open Access

    ARTICLE

    A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification

    Zhiyong Li, Xinlian Zhou*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 739-760, 2025, DOI:10.32604/cmc.2025.059807 - 26 March 2025

    Abstract Brain tumor classification is crucial for personalized treatment planning. Although deep learning-based Artificial Intelligence (AI) models can automatically analyze tumor images, fine details of small tumor regions may be overlooked during global feature extraction. Therefore, we propose a brain tumor Magnetic Resonance Imaging (MRI) classification model based on a global-local parallel dual-branch structure. The global branch employs ResNet50 with a Multi-Head Self-Attention (MHSA) to capture global contextual information from whole brain images, while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions. The features from both branches are processed through More >

  • Open Access

    ARTICLE

    Enhancing Malware Detection Resilience: A U-Net GAN Denoising Framework for Image-Based Classification

    Huiyao Dong1, Igor Kotenko2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4263-4285, 2025, DOI:10.32604/cmc.2025.062439 - 06 March 2025

    Abstract The growing complexity of cyber threats requires innovative machine learning techniques, and image-based malware classification opens up new possibilities. Meanwhile, existing research has largely overlooked the impact of noise and obfuscation techniques commonly employed by malware authors to evade detection, and there is a critical gap in using noise simulation as a means of replicating real-world malware obfuscation techniques and adopting denoising framework to counteract these challenges. This study introduces an image denoising technique based on a U-Net combined with a GAN framework to address noise interference and obfuscation challenges in image-based malware analysis. The… More >

  • Open Access

    ARTICLE

    GENOME: Genetic Encoding for Novel Optimization of Malware Detection and Classification in Edge Computing

    Sang-Hoon Choi1, Ki-Woong Park2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4021-4039, 2025, DOI:10.32604/cmc.2025.061267 - 06 March 2025

    Abstract The proliferation of Internet of Things (IoT) devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing. Nevertheless, the distributed nature of edge computing presents substantial security challenges, rendering it a prominent target for sophisticated malware attacks. Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources. This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation (GENOME) framework, a novel solution that is intended to improve the performance of malware detection and… More >

Displaying 21-30 on page 3 of 1221. Per Page