Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,053)
  • Open Access


    Deep Convolutional Neural Networks for Accurate Classification of Gastrointestinal Tract Syndromes

    Zahid Farooq Khan1, Muhammad Ramzan1,*, Mudassar Raza1, Muhammad Attique Khan2,3, Khalid Iqbal4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1207-1225, 2024, DOI:10.32604/cmc.2023.045491

    Abstract Accurate detection and classification of artifacts within the gastrointestinal (GI) tract frames remain a significant challenge in medical image processing. Medical science combined with artificial intelligence is advancing to automate the diagnosis and treatment of numerous diseases. Key to this is the development of robust algorithms for image classification and detection, crucial in designing sophisticated systems for diagnosis and treatment. This study makes a small contribution to endoscopic image classification. The proposed approach involves multiple operations, including extracting deep features from endoscopy images using pre-trained neural networks such as Darknet-53 and Xception. Additionally, feature optimization utilizes the binary dragonfly algorithm… More >

  • Open Access


    Facial Image-Based Autism Detection: A Comparative Study of Deep Neural Network Classifiers

    Tayyaba Farhat1,2, Sheeraz Akram3,*, Hatoon S. AlSagri3, Zulfiqar Ali4, Awais Ahmad3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 105-126, 2024, DOI:10.32604/cmc.2023.045022

    Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by significant challenges in social interaction, communication, and repetitive behaviors. Timely and precise ASD detection is crucial, particularly in regions with limited diagnostic resources like Pakistan. This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context. The research involves experimentation with VGG16 and MobileNet models, exploring different batch sizes, optimizers, and learning rate schedulers. In addition, the “Orange” machine learning tool is employed to evaluate classifier performance and automated… More >

  • Open Access


    Deep Learning-Based Classification of Rotten Fruits and Identification of Shelf Life

    S. Sofana Reka1, Ankita Bagelikar2, Prakash Venugopal2,*, V. Ravi2, Harimurugan Devarajan3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 781-794, 2024, DOI:10.32604/cmc.2023.043369

    Abstract The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality, flavor and nutritional value. The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers. The impact of rotten fruits can foster harmful bacteria, molds and other microorganisms that can cause food poisoning and other illnesses to the consumers. The overall purpose of the study is to classify rotten fruits, which can affect the taste, texture, and appearance of other fresh fruits, thereby reducing their shelf life. The agriculture and food industries… More >

  • Open Access


    AI Fairness–From Machine Learning to Federated Learning

    Lalit Mohan Patnaik1,5, Wenfeng Wang2,3,4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1203-1215, 2024, DOI:10.32604/cmes.2023.029451

    Abstract This article reviews the theory of fairness in AI–from machine learning to federated learning, where the constraints on precision AI fairness and perspective solutions are also discussed. For a reliable and quantitative evaluation of AI fairness, many associated concepts have been proposed, formulated and classified. However, the inexplicability of machine learning systems makes it almost impossible to include all necessary details in the modelling stage to ensure fairness. The privacy worries induce the data unfairness and hence, the biases in the datasets for evaluating AI fairness are unavoidable. The imbalance between algorithms’ utility and humanization has further reinforced such worries.… More >

  • Open Access


    Letter Recognition Reinvented: A Dual Approach with MLP Neural Network and Anomaly Detection

    Nesreen M. Alharbi*, Ahmed Hamza Osman, Arwa A. Mashat, Hasan J. Alyamani

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 175-198, 2024, DOI:10.32604/csse.2023.041044

    Abstract Recent years have witnessed significant advancements in the field of character recognition, thanks to the revolutionary introduction of machine learning techniques. Among various types of character recognition, offline Handwritten Character Recognition (HCR) is comparatively more challenging as it lacks temporal information, such as stroke count and direction, ink pressure, and unexpected handwriting variability. These issues contribute to a poor level of precision, which calls for the adoption of anomaly detection techniques to enhance Optical Character Recognition (OCR) schemes. Previous studies have not researched unsupervised anomaly detection using MLP for handwriting recognition. Therefore, this study proposes a novel approach for enhanced… More >

  • Open Access


    Computational Linguistics Based Arabic Poem Classification and Dictarization Model

    Manar Ahmed Hamza1,*, Hala J. Alshahrani2, Najm Alotaibi3, Mohamed K. Nour4, Mahmoud Othman5, Gouse Pasha Mohammed1, Mohammed Rizwanullah1, Mohamed I. Eldesouki6

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 97-114, 2024, DOI:10.32604/csse.2023.034520

    Abstract Computational linguistics is the scientific and engineering discipline related to comprehending written and spoken language from a computational perspective and building artefacts that effectively process and produce language, either in bulk or in a dialogue setting. This paper develops a Chaotic Bird Swarm Optimization with deep ensemble learning based Arabic poem classification and dictarization (CBSOEDL-APCD) technique. The presented CBSOEDL-APCD technique involves the classification and dictarization of Arabic text into Arabic poetries and prose. Primarily, the CBSOEDL-APCD technique carries out data pre-processing to convert it into a useful format. Besides, the ensemble deep learning (EDL) model comprising deep belief network (DBN),… More >

  • Open Access


    A Comparative Performance Analysis of Machine Learning Models for Intrusion Detection Classification

    Adil Hussain1, Amna Khatoon2,*, Ayesha Aslam2, Tariq1, Muhammad Asif Khosa1

    Journal of Cyber Security, Vol.6, pp. 1-23, 2024, DOI:10.32604/jcs.2023.046915

    Abstract The importance of cybersecurity in contemporary society cannot be inflated, given the substantial impact of networks on various aspects of daily life. Traditional cybersecurity measures, such as anti-virus software and firewalls, safeguard networks against potential threats. In network security, using Intrusion Detection Systems (IDSs) is vital for effectively monitoring the various software and hardware components inside a given network. However, they may encounter difficulties when it comes to detecting solitary attacks. Machine Learning (ML) models are implemented in intrusion detection widely because of the high accuracy. The present work aims to assess the performance of machine learning algorithms in the… More >

  • Open Access


    A Bitcoin Address Multi-Classification Mechanism Based on Bipartite Graph-Based Maximization Consensus

    Lejun Zhang1,2,3,*, Junjie Zhang1, Kentaroh Toyoda4, Yuan Liu2, Jing Qiu2, Zhihong Tian2, Ran Guo5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 783-800, 2024, DOI:10.32604/cmes.2023.043469

    Abstract Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges, gambling, marketplaces, and also scams such as high-yield investment projects. Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly. Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way. In this paper, we address the problem of identifying multiple classes of Bitcoin services, and for the poor classification of individual addresses that do not have significant… More >

  • Open Access


    ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules

    Lu Chen1,#, Huaqiang Chen2,#, Zhikai Pan7, Sheng Xu2, Guangsheng Lai2, Shuwen Chen2,5,6, Shuihua Wang3,8, Xiaodong Gu2,6,*, Yudong Zhang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 361-382, 2024, DOI:10.32604/cmes.2023.031229

    Abstract Aim: This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. Methods: A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model’s generalization ability. Third, we introduce strategies for augmenting the data. Finally, we submit… More >

  • Open Access


    A New Method for Diagnosis of Leukemia Utilizing a Hybrid DL-ML Approach for Binary and Multi-Class Classification on a Limited-Sized Database

    Nilkanth Mukund Deshpande1,2, Shilpa Gite3,4,*, Biswajeet Pradhan5,6, Abdullah Alamri7, Chang-Wook Lee8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 593-631, 2024, DOI:10.32604/cmes.2023.030704

    Abstract Infection of leukemia in humans causes many complications in its later stages. It impairs bone marrow’s ability to produce blood. Morphological diagnosis of human blood cells is a well-known and well-proven technique for diagnosis in this case. The binary classification is employed to distinguish between normal and leukemia-infected cells. In addition, various subtypes of leukemia require different treatments. These sub-classes must also be detected to obtain an accurate diagnosis of the type of leukemia. This entails using multi-class classification to determine the leukemia subtype. This is usually done using a microscopic examination of these blood cells. Due to the requirement… More > Graphic Abstract

    A New Method for Diagnosis of Leukemia Utilizing a Hybrid DL-ML Approach for Binary and Multi-Class Classification on a Limited-Sized Database

Displaying 21-30 on page 3 of 1053. Per Page