Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,051)
  • Open Access

    ARTICLE

    MDCN: Modified Dense Convolution Network Based Disease Classification in Mango Leaves

    Chirag Chandrashekar1, K. P. Vijayakumar1,*, K. Pradeep1, A. Balasundaram1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2511-2533, 2024, DOI:10.32604/cmc.2024.047697

    Abstract The most widely farmed fruit in the world is mango. Both the production and quality of the mangoes are hampered by many diseases. These diseases need to be effectively controlled and mitigated. Therefore, a quick and accurate diagnosis of the disorders is essential. Deep convolutional neural networks, renowned for their independence in feature extraction, have established their value in numerous detection and classification tasks. However, it requires large training datasets and several parameters that need careful adjustment. The proposed Modified Dense Convolutional Network (MDCN) provides a successful classification scheme for plant diseases affecting mango leaves. This model employs the strength… More >

  • Open Access

    ARTICLE

    Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter

    R. Sujatha, K. Nimala*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1669-1686, 2024, DOI:10.32604/cmc.2023.046963

    Abstract Sentence classification is the process of categorizing a sentence based on the context of the sentence. Sentence categorization requires more semantic highlights than other tasks, such as dependence parsing, which requires more syntactic elements. Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence, recognizing the progress and comparing impacts. An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus. The conversational sentences are classified into four categories: information, question, directive, and commission. These classification label sequences are for analyzing the conversation progress and… More >

  • Open Access

    ARTICLE

    Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing

    Huixiang Xu*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2309-2335, 2024, DOI:10.32604/cmc.2024.046253

    Abstract The Internet of Things (IoT) has revolutionized how we interact with and gather data from our surrounding environment. IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights. The rapid proliferation of Internet of Things (IoT) devices has ushered in an era of unprecedented data generation and connectivity. These IoT devices, equipped with many sensors and actuators, continuously produce vast volumes of data. However, the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges. However, transmitting all this data to a… More >

  • Open Access

    ARTICLE

    Facial Expression Recognition with High Response-Based Local Directional Pattern (HR-LDP) Network

    Sherly Alphonse*, Harshit Verma

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2067-2086, 2024, DOI:10.32604/cmc.2024.046070

    Abstract Although lots of research has been done in recognizing facial expressions, there is still a need to increase the accuracy of facial expression recognition, particularly under uncontrolled situations. The use of Local Directional Patterns (LDP), which has good characteristics for emotion detection has yielded encouraging results. An innovative end-to-end learnable High Response-based Local Directional Pattern (HR-LDP) network for facial emotion recognition is implemented by employing fixed convolutional filters in the proposed work. By combining learnable convolutional layers with fixed-parameter HR-LDP layers made up of eight Kirsch filters and derivable simulated gate functions, this network considerably minimizes the number of network… More >

  • Open Access

    ARTICLE

    Depression Intensity Classification from Tweets Using FastText Based Weighted Soft Voting Ensemble

    Muhammad Rizwan1,2, Muhammad Faheem Mushtaq1, Maryam Rafiq2, Arif Mehmood3, Isabel de la Torre Diez4, Monica Gracia Villar5,6,7, Helena Garay5,8,9, Imran Ashraf10,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2047-2066, 2024, DOI:10.32604/cmc.2024.037347

    Abstract Predicting depression intensity from microblogs and social media posts has numerous benefits and applications, including predicting early psychological disorders and stress in individuals or the general public. A major challenge in predicting depression using social media posts is that the existing studies do not focus on predicting the intensity of depression in social media texts but rather only perform the binary classification of depression and moreover noisy data makes it difficult to predict the true depression in the social media text. This study intends to begin by collecting relevant Tweets and generating a corpus of 210000 public tweets using Twitter… More >

  • Open Access

    ARTICLE

    Deep Learning Model for News Quality Evaluation Based on Explicit and Implicit Information

    Guohui Song1,2, Yongbin Wang1,*, Jianfei Li1, Hongbin Hu1

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 275-295, 2023, DOI:10.32604/iasc.2023.041873

    Abstract Recommending high-quality news to users is vital in improving user stickiness and news platforms’ reputation. However, existing news quality evaluation methods, such as clickbait detection and popularity prediction, are challenging to reflect news quality comprehensively and concisely. This paper defines news quality as the ability of news articles to elicit clicks and comments from users, which represents whether the news article can attract widespread attention and discussion. Based on the above definition, this paper first presents a straightforward method to measure news quality based on the comments and clicks of news and defines four news quality indicators. Then, the dataset… More >

  • Open Access

    ARTICLE

    Driving Activity Classification Using Deep Residual Networks Based on Smart Glasses Sensors

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 139-151, 2023, DOI:10.32604/iasc.2023.033940

    Abstract Accidents are still an issue in an intelligent transportation system, despite developments in self-driving technology (ITS). Drivers who engage in risky behavior account for more than half of all road accidents. As a result, reckless driving behaviour can cause congestion and delays. Computer vision and multimodal sensors have been used to study driving behaviour categorization to lessen this problem. Previous research has also collected and analyzed a wide range of data, including electroencephalography (EEG), electrooculography (EOG), and photographs of the driver’s face. On the other hand, driving a car is a complicated action that requires a wide range of body… More >

  • Open Access

    ARTICLE

    Lightweight Malicious Code Classification Method Based on Improved SqueezeNet

    Li Li*, Youran Kong, Qing Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 551-567, 2024, DOI:10.32604/cmc.2023.045512

    Abstract With the growth of the Internet, more and more business is being done online, for example, online offices, online education and so on. While this makes people’s lives more convenient, it also increases the risk of the network being attacked by malicious code. Therefore, it is important to identify malicious codes on computer systems efficiently. However, most of the existing malicious code detection methods have two problems: (1) The ability of the model to extract features is weak, resulting in poor model performance. (2) The large scale of model data leads to difficulties deploying on devices with limited resources. Therefore,… More >

  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for Accurate Classification of Gastrointestinal Tract Syndromes

    Zahid Farooq Khan1, Muhammad Ramzan1,*, Mudassar Raza1, Muhammad Attique Khan2,3, Khalid Iqbal4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1207-1225, 2024, DOI:10.32604/cmc.2023.045491

    Abstract Accurate detection and classification of artifacts within the gastrointestinal (GI) tract frames remain a significant challenge in medical image processing. Medical science combined with artificial intelligence is advancing to automate the diagnosis and treatment of numerous diseases. Key to this is the development of robust algorithms for image classification and detection, crucial in designing sophisticated systems for diagnosis and treatment. This study makes a small contribution to endoscopic image classification. The proposed approach involves multiple operations, including extracting deep features from endoscopy images using pre-trained neural networks such as Darknet-53 and Xception. Additionally, feature optimization utilizes the binary dragonfly algorithm… More >

  • Open Access

    ARTICLE

    Facial Image-Based Autism Detection: A Comparative Study of Deep Neural Network Classifiers

    Tayyaba Farhat1,2, Sheeraz Akram3,*, Hatoon S. AlSagri3, Zulfiqar Ali4, Awais Ahmad3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 105-126, 2024, DOI:10.32604/cmc.2023.045022

    Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by significant challenges in social interaction, communication, and repetitive behaviors. Timely and precise ASD detection is crucial, particularly in regions with limited diagnostic resources like Pakistan. This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context. The research involves experimentation with VGG16 and MobileNet models, exploring different batch sizes, optimizers, and learning rate schedulers. In addition, the “Orange” machine learning tool is employed to evaluate classifier performance and automated… More >

Displaying 11-20 on page 2 of 1051. Per Page