Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (363)
  • Open Access

    ARTICLE

    Statistics of High Purity Nickel Microstructure From High Energy X-ray Diffraction Microscopy

    C.M. Hefferan1, S.F. Li1, J. Lind1, U. Lienert2, A.D. Rollett3, P. Wynblatt3, R.M. Suter1,3

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 209-220, 2009, DOI:10.3970/cmc.2009.014.209

    Abstract We have measured and reconstructed via forward modeling a small volume of microstructure of high purity, well annealed nickel using high energy x-ray diffraction microscopy (HEDM). Statistical distributions characterizing grain orientations, intra-granular misorientations, and nearest neighbor grain misorientations are extracted. Results are consistent with recent electron backscatter diffraction measurements. Peaks in the grain neighbor misorientation angle distribution at 60 degrees (∑3) and 39 degrees (∑9) have resolution limited widths of ≈ 0.14 degree FWHM. The analysis demonstrates that HEDM can recover grain and grain boundary statistics comparable to OIM volume measurements; more extensive data sets will lead to full, five… More >

  • Open Access

    ARTICLE

    EBSD-Based Microscopy: Resolution of Dislocation Density

    Brent L. Adams, Joshua Kacher

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 185-196, 2009, DOI:10.3970/cmc.2009.014.185

    Abstract Consideration is given to the resolution of dislocation density afforded by EBSD-based scanning electron microscopy. Comparison between the conventional Hough- and the emerging high-resolution cross-correlation-based approaches is made. It is illustrated that considerable care must be exercised in selecting a step size (Burger's circuit size) for experimental measurements. Important variables affecting this selection include the dislocation density and the physical size and density of dislocation dipole and multi-pole components of the structure. It is also illustrated that simulations can be useful to the interpretation of experimental recoveries. More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study of Micro Deep Drawing of Copper Single Crystal

    XL Geng1, KS Zhang2, YQ Guo1, L Qin1

    CMC-Computers, Materials & Continua, Vol.13, No.1, pp. 1-16, 2009, DOI:10.3970/cmc.2009.013.001

    Abstract One of the problems in a micro-forming process is the grain size effect, which means the formed part consists of a single grain or several grains sometimes, so the material shows anisotropic or heterogeneous. Under these conditions, a conventional method, which based on the isotropic and homogeneous material hypothesis, is not suitable. In this paper, Experimental investigations into micro deep drawing of the copper single crystal were carried out and the pattern of the micro-cup and the drawing force were observed. Using crystal plasticity theory, a user material subroutine (VUMAT) was built and linked to ABAQUS, and the micro deep… More >

Displaying 361-370 on page 37 of 363. Per Page