Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    A Double-Branch Xception Architecture for Acute Hemorrhage Detection and Subtype Classification

    Muhammad Naeem Akram1, Muhammad Usman Yaseen1, Muhammad Waqar1, Muhammad Imran1,*, Aftab Hussain2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3727-3744, 2023, DOI:10.32604/cmc.2023.041855

    Abstract This study presents a deep learning model for efficient intracranial hemorrhage (ICH) detection and subtype classification on non-contrast head computed tomography (CT) images. ICH refers to bleeding in the skull, leading to the most critical life-threatening health condition requiring rapid and accurate diagnosis. It is classified as intra-axial hemorrhage (intraventricular, intraparenchymal) and extra-axial hemorrhage (subdural, epidural, subarachnoid) based on the bleeding location inside the skull. Many computer-aided diagnoses (CAD)-based schemes have been proposed for ICH detection and classification at both slice and scan levels. However, these approaches perform only binary classification and suffer from a large number of parameters, which… More >

  • Open Access

    ARTICLE

    Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution

    Liwei Deng1, Yuanzhi Zhang1, Xin Yang2,*, Sijuan Huang2, Jing Wang3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2671-2684, 2023, DOI:10.32604/cmc.2023.036642

    Abstract High-resolution medical images have important medical value, but are difficult to obtain directly. Limited by hardware equipment and patient’s physical condition, the resolution of directly acquired medical images is often not high. Therefore, many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images. However, current super-resolution algorithms only work on a single scale, and multiple networks need to be trained when super-resolution images of different scales are needed. This definitely raises the cost of acquiring high-resolution medical images. Thus, we propose a multi-scale super-resolution algorithm using meta-learning. The algorithm combines a meta-learning approach with… More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Based Image Reconstruction for Computed Tomography: A Survey

    Quan Yan1, Yunfan Ye1, Jing Xia1, Zhiping Cai1,*, Zhilin Wang2, Qiang Ni3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2545-2558, 2023, DOI:10.32604/iasc.2023.029857

    Abstract Computed tomography has made significant advances since its introduction in the early 1970s, where researchers have mainly focused on the quality of image reconstruction in the early stage. However, radiation exposure poses a health risk, prompting the demand of the lowest possible dose when carrying out CT examinations. To acquire high-quality reconstruction images with low dose radiation, CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction, to reconstruction methods based on artificial intelligence (AI). All these efforts are devoted to constructing high-quality images using only low doses with fast reconstruction speed. In particular, conventional reconstruction… More >

  • Open Access

    ARTICLE

    Deep Learning-Enabled Brain Stroke Classification on Computed Tomography Images

    Azhar Tursynova1, Batyrkhan Omarov1,2, Natalya Tukenova3,*, Indira Salgozha4, Onergul Khaaval3, Rinat Ramazanov5, Bagdat Ospanov5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1431-1446, 2023, DOI:10.32604/cmc.2023.034400

    Abstract In the field of stroke imaging, deep learning (DL) has enormous untapped potential. When clinically significant symptoms of a cerebral stroke are detected, it is crucial to make an urgent diagnosis using available imaging techniques such as computed tomography (CT) scans. The purpose of this work is to classify brain CT images as normal, surviving ischemia or cerebral hemorrhage based on the convolutional neural network (CNN) model. In this study, we propose a computer-aided diagnostic system (CAD) for categorizing cerebral strokes using computed tomography images. Horizontal flip data magnification techniques were used to obtain more accurate categorization. Image Data Generator… More >

  • Open Access

    ARTICLE

    Automated Brain Hemorrhage Classification and Volume Analysis

    Maryam Wardah1, Muhammad Mateen1,*, Tauqeer Safdar Malik2, Mohammad Eid Alzahrani3, Adil Fahad3, Abdulmohsen Almalawi4, Rizwan Ali Naqvi5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2283-2299, 2023, DOI:10.32604/cmc.2023.030706

    Abstract Brain hemorrhage is a serious and life-threatening condition. It can cause permanent and lifelong disability even when it is not fatal. The word hemorrhage denotes leakage of blood within the brain and this leakage of blood from capillaries causes stroke and adequate supply of oxygen to the brain is hindered. Modern imaging methods such as computed tomography (CT) and magnetic resonance imaging (MRI) are employed to get an idea regarding the extent of the damage. An early diagnosis and treatment can save lives and limit the adverse effects of a brain hemorrhage. In this case, a deep neural network (DNN)… More >

  • Open Access

    ARTICLE

    SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition

    Yudong Zhang1, Muhammad Attique Khan2, Ziquan Zhu1, Shuihua Wang1,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 13-26, 2023, DOI:10.32604/csse.2023.034172

    Abstract (Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage,… More >

  • Open Access

    ARTICLE

    Assessment of Intracardiac and Extracardiac Deformities in Patients with Various Types of Pulmonary Atresia by Dual-Source Computed Tomography

    Wenlei Qian1,#, Xinzhu Zhou2,#, Ke Shi1, Li Jiang1, Xi Liu3, Liting Shen1, Zhigang Yang1,*

    Congenital Heart Disease, Vol.18, No.1, pp. 113-125, 2023, DOI:10.32604/chd.2023.023542

    Abstract Background: Pulmonary atresia (PA) is a group of heterogeneous complex congenital heart disease. Only one study modality might not get a correct diagnosis. This study aims to investigate the diagnostic power of dual-source computed tomography (DSCT) for all intracardiac and extracardiac deformities in patients with PA compared with transthoracic echocardiography (TTE). Materials and Methods: This retrospective study enrolled 79 patients and divided them into three groups according to their main diagnosis. All associated malformations and clinical information, including treatments, were recorded and compared among the three groups. The diagnostic power of DSCT and TTE on all associated malformations were compared.… More > Graphic Abstract

    Assessment of Intracardiac and Extracardiac Deformities in Patients with Various Types of Pulmonary Atresia by Dual-Source Computed Tomography

  • Open Access

    ARTICLE

    Differentiate Xp11.2 Translocation Renal Cell Carcinoma from Computed Tomography Images and Clinical Data with ResNet-18 CNN and XGBoost

    Yanwen Lu1,#, Wenliang Ma1,#, Xiang Dong1,#, Mackenzie Brown2, Tong Lu3,*, Weidong Gan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 347-362, 2023, DOI:10.32604/cmes.2023.024909

    Abstract This study aims to apply ResNet-18 convolutional neural network (CNN) and XGBoost to preoperative computed tomography (CT) images and clinical data for distinguishing Xp11.2 translocation renal cell carcinoma (Xp11.2 tRCC) from common subtypes of renal cell carcinoma (RCC) in order to provide patients with individualized treatment plans. Data from 45 patients with Xp11.2 tRCC from January 2007 to December 2021 are collected. Clear cell RCC (ccRCC), papillary RCC (pRCC), or chromophobe RCC (chRCC) can be detected from each patient. CT images are acquired in the following three phases: unenhanced, corticomedullary, and nephrographic. A unified framework is proposed for the classification… More >

  • Open Access

    ARTICLE

    Lung Cancer Detection Using Modified AlexNet Architecture and Support Vector Machine

    Iftikhar Naseer1,*, Tehreem Masood1, Sheeraz Akram1, Arfan Jaffar1, Muhammad Rashid2, Muhammad Amjad Iqbal3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2039-2054, 2023, DOI:10.32604/cmc.2023.032927

    Abstract Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung. It is mostly caused by the instinctive growth of cells in the lung. Lung nodule detection has a significant role in detecting and screening lung cancer in Computed tomography (CT) scan images. Early detection plays an important role in the survival rate and treatment of lung cancer patients. Moreover, pulmonary nodule classification techniques based on the convolutional neural network can be used for the accurate and efficient detection of lung cancer. This work proposed an automatic nodule detection method in CT… More >

  • Open Access

    ARTICLE

    Diagnostic Yield of Non-Invasive Testing in Patients with Anomalous Aortic Origin of Coronary Arteries: A Multicentric Experience

    Alberto Cipriani1,#, Pietro Bernardo Dall’Aglio1,#, Laura Mazzotta1, Domenico Sirico2, George Sarris3, Mark Hazekamp4, Thierry Carrel5, Alessandro Frigiola6, Vladimir Sojak4, Mauro Lo Rito6, Jurgen Horer7, Regine Roussin7, Julie Cleuziou8, Bart Meyns9, Jose Fragata10, Helena Telles10, Anastasios C. Polimenakos11, Katrien Francois12, Altin Veshti13, Jukka Salminen14, Alvaro Gonzalez Rocafort15, Matej Nosal16, Eleftherios Protopapas3, Roberto Tumbarello17, Patrizio Sarto18, Cinzia Pegoraro18, Raffaella Motta19, Giovanni Di Salvo2, Domenico Corrado1, Vladimiro L. Vida1, Massimo A. Padalino1,2,*

    Congenital Heart Disease, Vol.17, No.4, pp. 375-385, 2022, DOI:10.32604/chd.2022.019385

    Abstract Background: Anomalous aortic origin of a coronary artery (AAOCA) is a congenital heart disease with a 0.3%−0.5% prevalence. Diagnosis is challenging due to nonspecific clinical presentation. Risk stratification and treatment are currently based on expert consensus and single-center case series. Methods: Demographical and clinical data of AAOCA patients from 17 tertiary-care centers were analyzed. Diagnostic imaging studies (Bidimensional echocardiography, coronary computed tomography angiography [CCTA] were collected. Clinical correlations with anomalous coronary course and origin were evaluated. Results: Data from 239 patients (42% males, mean age 15 y) affected by AAOCA were collected; 154 had AAOCA involving the right coronary artery… More > Graphic Abstract

    Diagnostic Yield of Non-Invasive Testing in Patients with Anomalous Aortic Origin of Coronary Arteries: A Multicentric Experience

Displaying 1-10 on page 1 of 41. Per Page