Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Breast Calcifications and Histopathological Analysis on Tumour Detection by CNN

    D. Banumathy1,*, Osamah Ibrahim Khalaf2, Carlos Andrés Tavera Romero3, P. Vishnu Raja4, Dilip Kumar Sharma5

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 595-612, 2023, DOI:10.32604/csse.2023.025611

    Abstract The most salient argument that needs to be addressed universally is Early Breast Cancer Detection (EBCD), which helps people live longer lives. The Computer-Aided Detection (CADs)/Computer-Aided Diagnosis (CADx) system is indeed a software automation tool developed to assist the health professions in Breast Cancer Detection and Diagnosis (BCDD) and minimise mortality by the use of medical histopathological image classification in much less time. This paper purposes of examining the accuracy of the Convolutional Neural Network (CNN), which can be used to perceive breast malignancies for initial breast cancer detection to determine which strategy is efficient for the early identification of… More >

  • Open Access

    ARTICLE

    Multi-View Auxiliary Diagnosis Algorithm for Lung Nodules

    Shi Qiu1, Bin Li2,*, Tao Zhou3, Feng Li4, Ting Liang5

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4897-4910, 2022, DOI:10.32604/cmc.2022.026855

    Abstract Lung is an important organ of human body. More and more people are suffering from lung diseases due to air pollution. These diseases are usually highly infectious. Such as lung tuberculosis, novel coronavirus COVID-19, etc. Lung nodule is a kind of high-density globular lesion in the lung. Physicians need to spend a lot of time and energy to observe the computed tomography image sequences to make a diagnosis, which is inefficient. For this reason, the use of computer-assisted diagnosis of lung nodules has become the current main trend. In the process of computer-aided diagnosis, how to reduce the false positive… More >

  • Open Access

    ARTICLE

    Intelligent Deep Transfer Learning Based Malaria Parasite Detection and Classification Model Using Biomedical Image

    Ahmad Alassaf, Mohamed Yacin Sikkandar*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5273-5285, 2022, DOI:10.32604/cmc.2022.025577

    Abstract Malaria is a severe disease caused by Plasmodium parasites, which can be detected through blood smear images. The early identification of the disease can effectively reduce the severity rate. Deep learning (DL) models can be widely employed to analyze biomedical images, thereby minimizing the misclassification rate. With this objective, this study developed an intelligent deep-transfer-learning-based malaria parasite detection and classification (IDTL-MPDC) model on blood smear images. The proposed IDTL-MPDC technique aims to effectively determine the presence of malarial parasites in blood smear images. In addition, the IDTL-MPDC technique derives median filtering (MF) as a pre-processing step. In addition, a residual… More >

  • Open Access

    ARTICLE

    Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy

    Qaisar Abbas1,*, Mostafa E. A. Ibrahim1,2, Abdul Rauf Baig1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4573-4590, 2022, DOI:10.32604/cmc.2022.023670

    Abstract Diabetic retinopathy (DR) diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features. This task is very difficult for ophthalmologists and time-consuming. Therefore, many computer-aided diagnosis (CAD) systems were developed to automate this screening process of DR. In this paper, a CAD-DR system is proposed based on preprocessing and a pre-train transfer learning-based convolutional neural network (PCNN) to recognize the five stages of DR through retinal fundus images. To develop this CAD-DR system, a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard… More >

  • Open Access

    ARTICLE

    Breast Tumor Computer-Aided Detection System Based on Magnetic Resonance Imaging Using Convolutional Neural Network

    Jing Lu1, Yan Wu2,#, Mingyan Hu1, Yao Xiong1, Yapeng Zhou1, Ziliang Zhao1, Liutong Shang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 365-377, 2022, DOI:10.32604/cmes.2021.017897

    Abstract Background: The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue. Early diagnosis of tumors has become the most effective way to prevent breast cancer. Method: For distinguishing between tumor and non-tumor in MRI, a new type of computer-aided detection CAD system for breast tumors is designed in this paper. The CAD system was constructed using three networks, namely, the VGG16, Inception V3, and ResNet50. Then, the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system. Result: CAD system built based on VGG16, Inception… More >

  • Open Access

    ARTICLE

    Modified Differential Box Counting in Breast Masses for Bioinformatics Applications

    S. Sathiya Devi1, S. Vidivelli2,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3049-3066, 2022, DOI:10.32604/cmc.2022.019917

    Abstract Breast cancer is one of the common invasive cancers and stands at second position for death after lung cancer. The present research work is useful in image processing for characterizing shape and gray-scale complexity. The proposed Modified Differential Box Counting (MDBC) extract Fractal features such as Fractal Dimension (FD), Lacunarity, and Succolarity for shape characterization. In traditional DBC method, the unreasonable results obtained when FD is computed for tumour regions with the same roughness of intensity surface but different gray-levels. The problem is overcome by the proposed MDBC method that uses box over counting and under counting that covers the… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Skin Lesion Diagnosis Model Using Dermoscopic Images

    G. Reshma1,*, Chiai Al-Atroshi2, Vinay Kumar Nassa3, B.T. Geetha4, Gurram Sunitha5, Mohammad Gouse Galety6, S. Neelakandan7

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 621-634, 2022, DOI:10.32604/iasc.2022.019117

    Abstract In recent years, intelligent automation in the healthcare sector becomes more familiar due to the integration of artificial intelligence (AI) techniques. Intelligent healthcare systems assist in making better decisions, which further enable the patient to provide improved medical services. At the same time, skin lesion is a deadly disease that affects people of all age groups. Skin lesion segmentation and classification play a vital part in the earlier and precise skin cancer diagnosis by intelligent systems. However, the automated diagnosis of skin lesions in dermoscopic images is challenging because of the problems such as artifacts (hair, gel bubble, ruler marker),… More >

  • Open Access

    ARTICLE

    Convolutional Neural Network for Histopathological Osteosarcoma Image Classification

    Imran Ahmed1,*, Humaira Sardar1, Hanan Aljuaid2, Fakhri Alam Khan1, Muhammad Nawaz1, Adnan Awais1

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3365-3381, 2021, DOI:10.32604/cmc.2021.018486

    Abstract Osteosarcoma is one of the most widespread causes of bone cancer globally and has a high mortality rate. Early diagnosis may increase the chances of treatment and survival however the process is time-consuming (reliability and complexity involved to extract the hand-crafted features) and largely depends on pathologists’ experience. Convolutional Neural Network (CNN—an end-to-end model) is known to be an alternative to overcome the aforesaid problems. Therefore, this work proposes a compact CNN architecture that has been rigorously explored on a Small Osteosarcoma histology Image Dataaseet (a high-class imbalanced dataset). Though, during training, class-imbalanced data can negatively affect the performance of… More >

  • Open Access

    ARTICLE

    Mammographic Image Classification Using Deep Neural Network for Computer-Aided Diagnosis

    Charles Arputham1,*, Krishnaraj Nagappan2, Lenin Babu Russeliah3, AdalineSuji Russeliah4

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 747-759, 2021, DOI:10.32604/iasc.2021.012077

    Abstract Breast cancer detection is a crucial topic in the healthcare sector. Breast cancer is a major reason for the increased mortality rate in recent years among women, specifically in developed and underdeveloped countries around the world. The incidence rate is less in India than in developed countries, but awareness must be increased. This paper focuses on an efficient deep learning-based diagnosis and classification technique to detect breast cancer from mammograms. The model includes preprocessing, segmentation, feature extraction, and classification. At the initial level, Laplacian filtering is applied to identify the portions of edges in mammogram images that are highly sensitive… More >

  • Open Access

    REVIEW

    Detection and Grading of Diabetic Retinopathy in Retinal Images Using Deep Intelligent Systems: A Comprehensive Review

    H. Asha Gnana Priya1, J. Anitha1, Daniela Elena Popescu2, Anju Asokan1, D. Jude Hemanth1, Le Hoang Son3,4,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2771-2786, 2021, DOI:10.32604/cmc.2021.012907

    Abstract Diabetic Retinopathy (DR) is an eye disease that mainly affects people with diabetes. People affected by DR start losing their vision from an early stage even though the symptoms are identified only at the later stage. Once the vision is lost, it cannot be regained but can be prevented from causing any further damage. Early diagnosis of DR is required for preventing vision loss, for which a trained ophthalmologist is required. The clinical practice is time-consuming and is not much successful in identifying DR at early stages. Hence, Computer-Aided Diagnosis (CAD) system is a suitable alternative for screening and grading… More >

Displaying 11-20 on page 2 of 23. Per Page