Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (623)
  • Open Access

    ARTICLE

    A Lightweight Super-Resolution Network for Infrared Images Based on an Adaptive Attention Mechanism

    Mengke Tang1, Yong Gan2,*, Yifan Zhang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2699-2716, 2025, DOI:10.32604/cmc.2025.064541 - 03 July 2025

    Abstract Infrared imaging technology has been widely adopted in various fields, such as military reconnaissance, medical diagnosis, and security monitoring, due to its excellent ability to penetrate smoke and fog. However, the prevalent low resolution of infrared images severely limits the accurate interpretation of their contents. In addition, deploying super-resolution models on resource-constrained devices faces significant challenges. To address these issues, this study proposes a lightweight super-resolution network for infrared images based on an adaptive attention mechanism. The network’s dynamic weighting module automatically adjusts the weights of the attention and non-attention branch outputs based on the… More >

  • Open Access

    ARTICLE

    Low-Complexity Hardware Architecture for Batch Normalization of CNN Training Accelerator

    Go-Eun Woo, Sang-Bo Park, Gi-Tae Park, Muhammad Junaid, Hyung-Won Kim*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3241-3257, 2025, DOI:10.32604/cmc.2025.063723 - 03 July 2025

    Abstract On-device Artificial Intelligence (AI) accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field, where frequent retraining is crucial due to frequent production changes. Batch normalization (BN) is fundamental to training convolutional neural networks (CNNs), but its implementation in compact accelerator chips remains challenging due to computational complexity, particularly in calculating statistical parameters and gradients across mini-batches. Existing accelerator architectures either compromise the training accuracy of CNNs through approximations or require substantial computational resources, limiting their practical deployment. We present a hardware-optimized BN accelerator… More >

  • Open Access

    ARTICLE

    Enhancing Android Malware Detection with XGBoost and Convolutional Neural Networks

    Atif Raza Zaidi1, Tahir Abbas1,*, Ali Daud2,*, Omar Alghushairy3, Hussain Dawood4, Nadeem Sarwar5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3281-3304, 2025, DOI:10.32604/cmc.2025.063646 - 03 July 2025

    Abstract Safeguarding against malware requires precise machine-learning algorithms to classify harmful apps. The Drebin dataset of 15,036 samples and 215 features yielded significant and reliable results for two hybrid models, CNN + XGBoost and KNN + XGBoost. To address the class imbalance issue, SMOTE (Synthetic Minority Over-sampling Technique) was used to preprocess the dataset, creating synthetic samples of the minority class (malware) to balance the training set. XGBoost was then used to choose the most essential features for separating malware from benign programs. The models were trained and tested using 6-fold cross-validation, measuring accuracy, precision, recall,… More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network Based Optical Character Recognition for Purely Handwritten Characters and Digits

    Syed Atir Raza1,2, Muhammad Shoaib Farooq1, Uzma Farooq3, Hanen Karamti 4, Tahir Khurshaid5,*, Imran Ashraf6,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3149-3173, 2025, DOI:10.32604/cmc.2025.063255 - 03 July 2025

    Abstract Urdu, a prominent subcontinental language, serves as a versatile means of communication. However, its handwritten expressions present challenges for optical character recognition (OCR). While various OCR techniques have been proposed, most of them focus on recognizing printed Urdu characters and digits. To the best of our knowledge, very little research has focused solely on Urdu pure handwriting recognition, and the results of such proposed methods are often inadequate. In this study, we introduce a novel approach to recognizing Urdu pure handwritten digits and characters using Convolutional Neural Networks (CNN). Our proposed method utilizes convolutional layers… More >

  • Open Access

    ARTICLE

    Explainable Diabetic Retinopathy Detection Using a Distributed CNN and LightGBM Framework

    Pooja Bidwai1,2, Shilpa Gite1,3, Biswajeet Pradhan4,*, Abdullah Almari5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2645-2676, 2025, DOI:10.32604/cmc.2025.061018 - 03 July 2025

    Abstract Diabetic Retinopathy (DR) is a critical disorder that affects the retina due to the constant rise in diabetics and remains the major cause of blindness across the world. Early detection and timely treatment are essential to mitigate the effects of DR, such as retinal damage and vision impairment. Several conventional approaches have been proposed to detect DR early and accurately, but they are limited by data imbalance, interpretability, overfitting, convergence time, and other issues. To address these drawbacks and improve DR detection accurately, a distributed Explainable Convolutional Neural network-enabled Light Gradient Boosting Machine (DE-ExLNN) is… More >

  • Open Access

    ARTICLE

    Effects of Normalised SSIM Loss on Super-Resolution Tasks

    Adéla Hamplová*, Tomáš Novák, Miroslav Žáček, Jiří Brožek

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3329-3349, 2025, DOI:10.32604/cmes.2025.066025 - 30 June 2025

    Abstract This study proposes a new component of the composite loss function minimised during training of the Super-Resolution (SR) algorithms—the normalised structural similarity index loss , which has the potential to improve the natural appearance of reconstructed images. Deep learning-based super-resolution (SR) algorithms reconstruct high-resolution images from low-resolution inputs, offering a practical means to enhance image quality without requiring superior imaging hardware, which is particularly important in medical applications where diagnostic accuracy is critical. Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity, visual artefacts may persist, making the design of… More >

  • Open Access

    ARTICLE

    Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain

    Naveen Chandra1, Himadri Vaidya2,3, Suraj Sawant4, Shilpa Gite5,6, Biswajeet Pradhan7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3351-3375, 2025, DOI:10.32604/cmes.2025.064395 - 30 June 2025

    Abstract Landslide hazard detection is a prevalent problem in remote sensing studies, particularly with the technological advancement of computer vision. With the continuous and exceptional growth of the computational environment, the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning. Furthermore, attention models, driven by human visual procedures, have become vital in natural hazard-related studies. Hence, this paper proposes an enhanced YOLOv5 (You Only Look Once version 5) network for improved satellite-based landslide detection, embedded with two popular attention modules: CBAM (Convolutional Block Attention Module) More >

  • Open Access

    ARTICLE

    Intelligent Detection of Abnormal Traffic Based on SCN-BiLSTM

    Lulu Zhang, Xuehui Du*, Wenjuan Wang, Yu Cao, Xiangyu Wu, Shihao Wang

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1901-1919, 2025, DOI:10.32604/cmc.2025.064270 - 09 June 2025

    Abstract To address the limitations of existing abnormal traffic detection methods, such as insufficient temporal and spatial feature extraction, high false positive rate (FPR), poor generalization, and class imbalance, this study proposed an intelligent detection method that combines a Stacked Convolutional Network (SCN), Bidirectional Long Short-Term Memory (BiLSTM) network, and Equalization Loss v2 (EQL v2). This method was divided into two components: a feature extraction model and a classification and detection model. First, SCN was constructed by combining a Convolutional Neural Network (CNN) with a Depthwise Separable Convolution (DSC) network to capture the abstract spatial features More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Classification of Diseases in Date Palm Leaves

    Sameera V Mohd Sagheer1, Orwel P V2, P M Ameer3, Amal BaQais4, Shaeen Kalathil5,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1329-1349, 2025, DOI:10.32604/cmc.2025.063961 - 09 June 2025

    Abstract The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods. Conventional approaches rely on visual examination by experts to detect infected palm leaves, which is time intensive and susceptible to mistakes. This study proposes an automated leaf classification system that uses deep learning algorithms to identify and categorize diseases in date palm tree leaves with high precision and dependability. The system leverages pretrained convolutional neural network architectures (InceptionV3, DenseNet, and MobileNet) to extract and examine leaf characteristics for classification purposes. A publicly accessible dataset comprising multiple… More >

  • Open Access

    ARTICLE

    Diabetes Prediction Using ADASYN-Based Data Augmentation and CNN-BiGRU Deep Learning Model

    Tehreem Fatima1, Kewen Xia1,*, Wenbiao Yang2, Qurat Ul Ain1, Poornima Lankani Perera1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 811-826, 2025, DOI:10.32604/cmc.2025.063686 - 09 June 2025

    Abstract The rising prevalence of diabetes in modern society underscores the urgent need for precise and efficient diagnostic tools to support early intervention and treatment. However, the inherent limitations of existing datasets, including significant class imbalances and inadequate sample diversity, pose challenges to the accurate prediction and classification of diabetes. Addressing these issues, this study proposes an innovative diabetes prediction framework that integrates a hybrid Convolutional Neural Network-Bidirectional Gated Recurrent Unit (CNN-BiGRU) model for classification with Adaptive Synthetic Sampling (ADASYN) for data augmentation. ADASYN was employed to generate synthetic yet representative data samples, effectively mitigating class… More >

Displaying 41-50 on page 5 of 623. Per Page