Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,571)
  • Open Access

    ARTICLE

    Multi-Algorithm Machine Learning Framework for Predicting Crystal Structures of Lithium Manganese Silicate Cathodes Using DFT Data

    Muhammad Ishtiaq1, Yeon-Ju Lee2, Annabathini Geetha Bhavani3, Sung-Gyu Kang1,*, Nagireddy Gari Subba Reddy2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.075957 - 10 February 2026

    Abstract Lithium manganese silicate (Li-Mn-Si-O) cathodes are key components of lithium-ion batteries, and their physical and mechanical properties are strongly influenced by their underlying crystal structures. In this study, a range of machine learning (ML) algorithms were developed and compared to predict the crystal systems of Li-Mn-Si-O cathode materials using density functional theory (DFT) data obtained from the Materials Project database. The dataset comprised 211 compositions characterized by key descriptors, including formation energy, energy above the hull, bandgap, atomic site number, density, and unit cell volume. These features were utilized to classify the materials into monoclinic… More >

  • Open Access

    ARTICLE

    Actor–Critic Trajectory Controller with Optimal Design for Nonlinear Robotic Systems

    Nien-Tsu Hu1,*, Hsiang-Tung Kao1, Chin-Sheng Chen1, Shih-Hao Chang2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074993 - 10 February 2026

    Abstract Trajectory tracking for nonlinear robotic systems remains a fundamental yet challenging problem in control engineering, particularly when both precision and efficiency must be ensured. Conventional control methods are often effective for stabilization but may not directly optimize long-term performance. To address this limitation, this study develops an integrated framework that combines optimal control principles with reinforcement learning for a single-link robotic manipulator. The proposed scheme adopts an actor–critic structure, where the critic network approximates the value function associated with the Hamilton–Jacobi–Bellman equation, and the actor network generates near-optimal control signals in real time. This dual… More >

  • Open Access

    ARTICLE

    A Robust Image Encryption Method Based on the Randomness Properties of DNA Nucleotides

    Bassam Al-Shargabi1,*, Mohammed Abbas Fadhil Al-Husainy2, Abdelrahman Abuarqoub1, Omar Albahbouh Aldabbas3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074550 - 10 February 2026

    Abstract The advent of 5G technology has significantly enhanced the transmission of images over networks, expanding data accessibility and exposure across various applications in digital technology and social media. Consequently, the protection of sensitive data has become increasingly critical. Regardless of the complexity of the encryption algorithm used, a robust and highly secure encryption key is essential, with randomness and key space being crucial factors. This paper proposes a new Robust Deoxyribonucleic Acid (RDNA) nucleotide-based encryption method. The RDNA encryption method leverages the unique properties of DNA nucleotides, including their inherent randomness and extensive key space,… More >

  • Open Access

    ARTICLE

    Design of a Patrol and Security Robot with Semantic Mapping and Obstacle Avoidance System Using RGB-D Camera and LiDAR

    Shu-Yin Chiang*, Shin-En Huang

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074528 - 10 February 2026

    Abstract This paper presents an intelligent patrol and security robot integrating 2D LiDAR and RGB-D vision sensors to achieve semantic simultaneous localization and mapping (SLAM), real-time object recognition, and dynamic obstacle avoidance. The system employs the YOLOv7 deep-learning framework for semantic detection and SLAM for localization and mapping, fusing geometric and visual data to build a high-fidelity 2D semantic map. This map enables the robot to identify and project object information for improved situational awareness. Experimental results show that object recognition reached 95.4% mAP@0.5. Semantic completeness increased from 68.7% (single view) to 94.1% (multi-view) with an More >

  • Open Access

    ARTICLE

    ISTIRDA: An Efficient Data Availability Sampling Scheme for Lightweight Nodes in Blockchain

    Jiaxi Wang1, Wenbo Sun2, Ziyuan Zhou1, Shihua Wu1, Jiang Xu1, Shan Ji3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073237 - 10 February 2026

    Abstract Lightweight nodes are crucial for blockchain scalability, but verifying the availability of complete block data puts significant strain on bandwidth and latency. Existing data availability sampling (DAS) schemes either require trusted setups or suffer from high communication overhead and low verification efficiency. This paper presents ISTIRDA, a DAS scheme that lets light clients certify availability by sampling small random codeword symbols. Built on ISTIR, an improved Reed–Solomon interactive oracle proof of proximity, ISTIRDA combines adaptive folding with dynamic code rate adjustment to preserve soundness while lowering communication. This paper formalizes opening consistency and prove security… More >

  • Open Access

    ARTICLE

    Design, Realization, and Evaluation of Faster End-to-End Data Transmission over Voice Channels

    Jian Huang1, Mingwei Li1, Yulong Tian1, Yi Yao2, Hao Han1,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073201 - 10 February 2026

    Abstract With the popularization of new technologies, telephone fraud has become the main means of stealing money and personal identity information. Taking inspiration from the website authentication mechanism, we propose an end-to-end data modem scheme that transmits the caller’s digital certificates through a voice channel for the recipient to verify the caller’s identity. Encoding useful information through voice channels is very difficult without the assistance of telecommunications providers. For example, speech activity detection may quickly classify encoded signals as non-speech signals and reject input waveforms. To address this issue, we propose a novel modulation method based… More >

  • Open Access

    ARTICLE

    Low-Reynolds-Number Performance of Micro Radial-Flow Turbines at High Altitudes

    Yanzhao Yang1, Kai Yang2, Junwei Zhang3, Fengsuo Jiang1, Sheng Xu1, Lei Chen4, Jun Bai5, Luyi Lu5, Hua Ji5, Zhihao Jing5, Senhao Wang1, Jingjing Zheng1, Haifeng Zhai1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075227 - 06 February 2026

    Abstract The low-pressure and low-density conditions encountered at high altitudes significantly reduce the operating Reynolds number of micro radial-flow turbines, frequently bringing it below the self-similarity critical threshold of 3.5 × 104. This departure undermines the applicability of conventional similarity-based design approaches. In this study, micro radial-flow turbines with rotor diameters below 50 mm are investigated through a combined approach integrating high-fidelity numerical simulations with experimental validation, aiming to elucidate the mechanisms by which low Reynolds numbers influence aerodynamic and thermodynamic performance. The results demonstrate that decreasing Reynolds number leads to boundary-layer thickening on blade surfaces, enhanced More >

  • Open Access

    ARTICLE

    A New Normalized Climate Index (U2) for Türkiye: Comparison with Classical Methods

    Erdinç Uslan1,*, Emin Ulugergerli2

    Revue Internationale de Géomatique, Vol.35, pp. 31-51, 2026, DOI:10.32604/rig.2026.075081 - 05 February 2026

    Abstract Climate classification systems are essential tools for analyzing regional climatic behavior, assessing long-term aridity patterns, and evaluating the impacts of climate change on water resources and ecosystem resilience. This study introduces a new Climate Classification Method based on uniform and unitless variables, referred to as the U2 Climate Classification (U2CC). The proposed U2 Index was designed to overcome structural limitations of the classical De Martonne (1942) and Erinç (1949) indices, which rely on raw precipitation–temperature ratios and are sensitive to extreme values, particularly subzero temperatures. The U2 methodology consisted of two key steps: (i) normalization… More >

  • Open Access

    ARTICLE

    Two Eras of Despair: A Long-Term Trend Analysis of Deaths of Despair in Central and Eastern Europe and Central Asia

    Eun Hae Lee1,2,3, Minjae Choi4,5, Hanul Park3,6, Joon Hee Han3,6,7, Sujeong Yu3,8, Joshua Kirabo Sempungu1,2,3,6, Inbae Sohn4,6, Yo Han Lee3,6,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073735 - 28 January 2026

    Abstract Background: That Central and Eastern Europe and Central Asia (CEECA) experienced a major mortality crisis in the 1990s is a well-established finding, with most analyses focusing on singular causes like alcohol-related deaths. However, the utility of the integrated “deaths of despair” framework, which views alcohol, drug, and suicide deaths as a unified socio-economic phenomenon, remains under-explored in this context. Crucially, the long-term evolution of the composition of despair within the region remains a largely unexplored area of inquiry. Therefore, this study aims to analyze the long-term trends, changing composition, and regional heterogeneity of deaths from despair… More >

  • Open Access

    ARTICLE

    MCPSFOA: Multi-Strategy Enhanced Crested Porcupine-Starfish Optimization Algorithm for Global Optimization and Engineering Design

    Hao Chen1, Tong Xu1, Yutian Huang2, Dabo Xin1,*, Changting Zhong1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075792 - 29 January 2026

    Abstract Optimization problems are prevalent in various fields of science and engineering, with several real-world applications characterized by high dimensionality and complex search landscapes. Starfish optimization algorithm (SFOA) is a recently optimizer inspired by swarm intelligence, which is effective for numerical optimization, but it may encounter premature and local convergence for complex optimization problems. To address these challenges, this paper proposes the multi-strategy enhanced crested porcupine-starfish optimization algorithm (MCPSFOA). The core innovation of MCPSFOA lies in employing a hybrid strategy to improve SFOA, which integrates the exploratory mechanisms of SFOA with the diverse search capacity of… More >

Displaying 1-10 on page 1 of 1571. Per Page