Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (323)
  • Open Access

    ARTICLE

    THERMO-HYDRAULICS OF TUBE BANKS WITH POROUS INTERCONNECTORS USING WATER AS COOLING FLUID

    P. V. Ramana, Arunn Narasimhan*, Dhiman Chatterjee

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3007

    Abstract The present experimental study investigates the effect of tube-to-tube porous interconnectors on the pressure drop and heat transfer (Nu) of tube banks. A copper wire mesh porous medium connects successive tubes of the in-line and staggered arrangement of six rows of tubes. The tubes are subjected to constant and uniform heat flux and cooled by forced convection using water as a cooling fluid in the laminar flow range (100 < ReDuct < 625). The inline configuration with the tube-to-tube porous medium inter-connectors provides marginal enhancement of heat transfer and 12% reduction in the pressure drop penalty respectively, compared to tube… More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF 3D THERMAL AND HYDRAULIC CHARACTERISTICS OF WAVY FIN AND TUBE HEAT EXCHANGER

    Arafat A. Bhuiyana,1, A. K. M. Sadrul Islama, M. Ruhul Aminb

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-9, 2012, DOI:10.5098/hmt.v3.3.3006

    Abstract This numerical analysis presents the airside performance of a wavy fin-and-tube heat exchanger having 4 row configurations considering steady, incompressible and 3D flow using Commercial CFD Code ANSYS CFX 12.0. Results are presented in the form of friction factor (f), Colburn factor (j) and efficiency index (j/f). The numerical procedure has been validated by comparison with published numerical and experimental results and good agreement has been observed. A series of numerical calculations have been carried out in order to analyze the influence of various geometric characteristics on different fields as well as on the heat transfer and pressure drop and… More >

  • Open Access

    ARTICLE

    Numerical Study of the Effect of Splitter Blades on the Flow-Induced Noise of Hydraulic Turbine

    Fengxia Shi1,2, Guangbiao Zhao1,*, Yucai Tang1, Haonan Zhan1, Pengcheng Wang1

    Sound & Vibration, Vol.58, pp. 101-117, 2024, DOI:10.32604/sv.2024.047082

    Abstract In order to study the effect of splitter blades on the internal and external sound field of the hydraulic turbine, the paper chose a centrifugal pump with a specific speed ns = 33 reversed as a hydraulic turbine as the research object, and added the short blades on the original impeller to form a new splitter impeller. Based on the Re-Normalization Group (RNG) k-ε turbulence model to conduct numerical simulation for the hydraulic turbine, this thesis calculated the internal and external acoustic field by means of the acoustic boundary element (BEM) and finite element (FEM) and analyzed the noise radiation… More >

  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for Accurate Classification of Gastrointestinal Tract Syndromes

    Zahid Farooq Khan1, Muhammad Ramzan1,*, Mudassar Raza1, Muhammad Attique Khan2,3, Khalid Iqbal4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1207-1225, 2024, DOI:10.32604/cmc.2023.045491

    Abstract Accurate detection and classification of artifacts within the gastrointestinal (GI) tract frames remain a significant challenge in medical image processing. Medical science combined with artificial intelligence is advancing to automate the diagnosis and treatment of numerous diseases. Key to this is the development of robust algorithms for image classification and detection, crucial in designing sophisticated systems for diagnosis and treatment. This study makes a small contribution to endoscopic image classification. The proposed approach involves multiple operations, including extracting deep features from endoscopy images using pre-trained neural networks such as Darknet-53 and Xception. Additionally, feature optimization utilizes the binary dragonfly algorithm… More >

  • Open Access

    ARTICLE

    Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph

    Deng Qin1, Xing Du2, Tian Li1,*, Jiye Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2155-2173, 2024, DOI:10.32604/cmes.2023.044460

    Abstract Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly, energy efficient and rapid advances in train technology. Using computational fluid dynamics theory and the K-FWH acoustic equation, a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs. A component optimization method is proposed as a possible solution to the problem of aerodynamic drag and noise in high-speed pantographs. The results of the study indicate that the panhead, base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs. Therefore, a gradual optimization process is implemented to… More >

  • Open Access

    ARTICLE

    An Efficient Reliability-Based Optimization Method Utilizing High-Dimensional Model Representation and Weight-Point Estimation Method

    Xiaoyi Wang1, Xinyue Chang2, Wenxuan Wang1,*, Zijie Qiao3, Feng Zhang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1775-1796, 2024, DOI:10.32604/cmes.2023.043913

    Abstract The objective of reliability-based design optimization (RBDO) is to minimize the optimization objective while satisfying the corresponding reliability requirements. However, the nested loop characteristic reduces the efficiency of RBDO algorithm, which hinders their application to high-dimensional engineering problems. To address these issues, this paper proposes an efficient decoupled RBDO method combining high dimensional model representation (HDMR) and the weight-point estimation method (WPEM). First, we decouple the RBDO model using HDMR and WPEM. Second, Lagrange interpolation is used to approximate a univariate function. Finally, based on the results of the first two steps, the original nested loop reliability optimization model is… More >

  • Open Access

    ARTICLE

    Highly Accurate Golden Section Search Algorithms and Fictitious Time Integration Method for Solving Nonlinear Eigenvalue Problems

    Chein-Shan Liu1, Jian-Hung Shen2, Chung-Lun Kuo1, Yung-Wei Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1317-1335, 2024, DOI:10.32604/cmes.2023.030618

    Abstract This study sets up two new merit functions, which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems. For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less, where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector. 1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues. Simultaneously, the real… More >

  • Open Access

    ARTICLE

    Factors Influencing Fracture Propagation in Collaborative Fracturing of Multiple Horizontal Wells

    Diguang Gong1, Junbin Chen1, Cheng Cheng2, Yuanyuan Kou2,*

    Energy Engineering, Vol.121, No.2, pp. 425-437, 2024, DOI:10.32604/ee.2023.030196

    Abstract Horizontal well-stimulation is the key to unconventional resource exploration and development. The development mode of the well plant helps increase the stimulated reservoir volume. Nevertheless, fracture interference between wells reduces the fracturing effect. Here, a 2D hydro-mechanical coupling model describing hydraulic fracture (HF) propagation is established with the extended finite element method, and the effects of several factors on HF propagation during multiple wells fracturing are analyzed. The results show that with an increase in elastic modulus, horizontal principal stress difference and injection fluid displacement, the total fracture area and the reservoir stimulation efficiency are both improved in all three… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas

    Hongzhi Xu1,2, Jian Wang1,3, Shuxia Li1,*, Fengrui Zhao1, Chengwen Wang1, Yang Guo1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 505-523, 2024, DOI:10.32604/fdmp.2023.030604

    Abstract Natural gas hydrate (NGH) is generally produced and accumulated together with the underlying conventional gas. Therefore, optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate. In this study, three types of models accounting for the coexistence of these gases are considered. Type A considers the upper hydrate-bearing layer (HBL) adjacent to the lower conventional gas layer (CGL); with the Type B a permeable interlayer exists between the upper HBL and the lower CGL; with the type C there is an impermeable interlayer between the… More >

  • Open Access

    ARTICLE

    A New Heat Transfer Model for Multi-Gradient Drilling with Hollow Sphere Injection

    Jiangshuai Wang1,*, Chuchu Cai1, Pan Fu2,3, Jun Li4,5, Hongwei Yang4, Song Deng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 537-546, 2024, DOI:10.32604/fdmp.2023.030430

    Abstract Multi-gradient drilling is a new offshore drilling method. The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise control of the wellbore pressure. In this study, a new heat transfer model is proposed by which the variable mass flow is properly taken into account. Using this model, the effects of the main factors influencing the wellbore temperature are analyzed. The results indicate that at the position where the separation injection device is installed, the temperature increase of the fluid in the drill pipe is mitigated due… More >

Displaying 11-20 on page 2 of 323. Per Page