Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (323)
  • Open Access

    ARTICLE

    Jet Characteristics and Optimization of a Cavitation Nozzle for Hydraulic Fracturing Applications

    Yu Gao1, Zhenqiang Xu2,3,*, Kaixiang Shen2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 179-192, 2024, DOI:10.32604/fdmp.2023.030499

    Abstract Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool. In this study, the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ω turbulence model. The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect. Through orthogonal experiments, the nozzle geometric parameters are optimized, and the following configuration is found accordingly: contraction angle 20°, contraction segment length 6 mm, cylindrical segment… More >

  • Open Access

    ARTICLE

    Optimal Concentration of the Bubble Drainage Agent in Foam Drainage Gas Recovery Applications

    Shaopeng Liu1, Guowei Wang2,3,*, Pengfei Liu1, Dong Ye1, Jian Song1, Xing Liu1, Yang Cheng2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3045-3058, 2023, DOI:10.32604/fdmp.2023.029810

    Abstract Foam drainage is the flow of liquid through the interstitial spaces between bubbles driven by capillarity and gravity and resisted by viscous damping. The so-called foam drainage gas recovery technology is a technique traditionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production. In this context, determining the optimal concentration of the bubble drainage agent is generally crucial for the proper application of this method. In this study, a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a… More >

  • Open Access

    ARTICLE

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

    Qingyun Zeng1,2, Mingxin Zheng1,*, Dan Huang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2981-3005, 2023, DOI:10.32604/fdmp.2023.029427

    Abstract A complex interface exists between water flow and solid particles during hydraulic soil erosion. In this study, the particle discrete element method (DEM) has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes. Moreover, the weakly compressible smoothed particle hydrodynamics (WCSPH) approach has been exploited to simulate the instability process of the free surface fluid and its propagation characteristics at the solid–liquid interface. The influence of a suspended medium on the water flow dynamics has been characterized using the mixed viscosity concept accounting for the solid–liquid mixed particle volume ratio.… More > Graphic Abstract

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

  • Open Access

    ARTICLE

    CNN Based Features Extraction and Selection Using EPO Optimizer for Cotton Leaf Diseases Classification

    Mehwish Zafar1, Javeria Amin2, Muhammad Sharif1, Muhammad Almas Anjum3, Seifedine Kadry4,5,6, Jungeun Kim7,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2779-2793, 2023, DOI:10.32604/cmc.2023.035860

    Abstract Worldwide cotton is the most profitable cash crop. Each year the production of this crop suffers because of several diseases. At an early stage, computerized methods are used for disease detection that may reduce the loss in the production of cotton. Although several methods are proposed for the detection of cotton diseases, however, still there are limitations because of low-quality images, size, shape, variations in orientation, and complex background. Due to these factors, there is a need for novel methods for features extraction/selection for the accurate cotton disease classification. Therefore in this research, an optimized features fusion-based model is proposed,… More >

  • Open Access

    ARTICLE

    The Impact of Inoculum Preparation Media on Pollutant Removal through Phycoremediation of Agricultural Drainage Water by Desmodesmus sp.

    Asmaa Salah1, Hoda Sany1, Abo El-Khair B. El-Sayed2, Reham M. El-Bahbohy1, Heba I. Mohamed3,*, Ayman Amin1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.10, pp. 2875-2890, 2023, DOI:10.32604/phyton.2023.031064

    Abstract Water is the most essential natural resource for the future development. Agriculture production is extensively water-dependent and a significant polluter of water resources. So, this work investigated the effect of two different preparation media [Bold’s Basal Medium (BBM) and Domiati cheese whey (DCW)] for agricultural drainage water (ADW) remediation. All treatments were incubated for 6 days. According to the results of biomass productivity, specific growth rate, photosynthetic pigments, and biochemical composition, Desmodesmus sp. can grow in drainage water without dilution. The two treatments significantly reduced the concentration of nitrate, phosphate, chemical oxygen demand, and sodium in ADW. Finally, using cheese… More >

  • Open Access

    ARTICLE

    A Method of Evaluating the Effectiveness of a Hydraulic Oscillator in Horizontal Wells

    Zhen Zhong*, Yadong Li, Yuxuan Zhao, Pengfei Ju

    Sound & Vibration, Vol.57, pp. 15-27, 2023, DOI:10.32604/sv.2023.041954

    Abstract Bent-housing motor is the most widely used directional drilling tool, but it often encounters the problem of high friction when sliding drilling in horizontal wells. In this paper, a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration. A term called dynamic effective tractoring force (DETF) is defined and used to evaluate friction reduction effectiveness. The factors influencing the DETF are studied, and the tool placement optimization problem is investigated. The study finds that the drilling rate of penetration (ROP) can lower the DETF but does not change the trend of the DETF… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Diverter Materials in Hydraulic Fractures During Refracturing

    Daobing Wang1,*, Cheng Zheng1, Bo Yu1, Dongliang Sun1, Dingwei Weng2, Chunming He2, Meng Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09205

    Abstract Refracturing has become an important technique for increasing hydrocarbon production due to the low oil prices. During refracturing, the granular diverter materials are injected to temporarily seal old fractures in subsurface. These diverter materials are usually carried by the fracturing fluid, which is a typical solid-fluid flow in the fracture [1-3]. Therefore, we need to thoroughly understand the flow mechanism of diverter materials in hydraulic fractures, which is the key to the success of refracturing treatment.
    Using the Euler-Lagrange method, this paper presents a multiphase model to numerically simulate the flow process of diverter materials in hydraulic fracturing [4-6]. Two-way… More >

  • Open Access

    ARTICLE

    Modified Dragonfly Optimization with Machine Learning Based Arabic Text Recognition

    Badriyya B. Al-onazi1, Najm Alotaibi2, Jaber S. Alzahrani3, Hussain Alshahrani4, Mohamed Ahmed Elfaki4, Radwa Marzouk5, Mahmoud Othman6, Abdelwahed Motwakel7,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1537-1554, 2023, DOI:10.32604/cmc.2023.034196

    Abstract Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes. When the number of labels is limited to one, the task becomes single-label text categorization. The Arabic texts include unstructured information also like English texts, and that is understandable for machine learning (ML) techniques, the text is changed and demonstrated by numerical value. In recent times, the dominant method for natural language processing (NLP) tasks is recurrent neural network (RNN), in general, long short term memory (LSTM) and convolutional neural network (CNN). Deep learning (DL) models are currently presented for deriving… More >

  • Open Access

    PROCEEDINGS

    Study on Crack Propagation Behavior of Concrete with Water Fracture Interactions

    Wenhu Zhao1,2,*, Chengbin Du2, Xiaocui Chen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.010048

    Abstract Concrete structures such as offshore platforms, costal and port structures, dams, etc., are often submerged in water [1]. The water within concreter pores or cracks has a great influence on crack propagation behavior [2,3]. Several wedge-splitting experiments of compact specimens are conducted with a designed sealing device to study the water effects on concrete crack propagation. Different water pressures and different loading rates are considered loading on the pre-crack surfaces and waterproof strain gauges are stuck along the crack path to observe the fracture process during the experiments. Water pressure values on crack surfaces are recorded by diffused silicon water… More >

  • Open Access

    ARTICLE

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

    Ola Ragb1, Mokhtar Mohamed2, Mohamed S. Matbuly1, Omer Civalek3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2193-2217, 2023, DOI:10.32604/cmes.2023.028992

    Abstract Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices. The mathematical model for organic polymer solar cells contains a nonlinear diffusion–reaction partial differential equation system with electrostatic convection attached to a kinetic ordinary differential equation. To solve the problem, Polynomial-based differential quadrature, Sinc, and Discrete singular convolution are combined with block marching techniques. These schemes are employed to reduce the problem to a nonlinear algebraic system. The iterative quadrature technique is used to solve the reduced problem. The obtained results agreed with the previous exact one and the finite element method. Further, the effects… More > Graphic Abstract

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

Displaying 31-40 on page 4 of 323. Per Page