Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (545)
  • Open Access

    ARTICLE

    Surrogate-Based Dimensional Optimization of a Polymeric Roller for Ore Belt Conveyors Considering Viscoelastic Effects

    Rafiq Said Dias Jabour, Marco Antonio Luersen*, Euclides Alexandre Bernardelli

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072266 - 12 January 2026

    Abstract The roller is one of the fundamental elements of ore belt conveyor systems since it supports, guides, and directs material on the belt. This component comprises a body (the external tube) that rotates around a fixed shaft supported by easels. The external tube and shaft of rollers used in ore conveyor belts are mostly made of steel, resulting in high mass, hindering maintenance and replacement. Aiming to achieve mass reduction, we conducted a structural optimization of a roller with a polymeric external tube (hereafter referred to as a polymeric roller), seeking the optimal values for… More >

  • Open Access

    ARTICLE

    A Novel Quantitative Detection of Sleeve Grouting Compactness Based on Ultrasonic Time-Frequency Dual-Domain Analysis

    Longqi Liao1, Jing Li2, Yuhua Li3, Yuemin Wang3, Jinhua Li1,*, Liyuan Cao4,*, Chunxiang Li4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072237 - 08 January 2026

    Abstract Quantitative detection of sleeve grouting compactness is a technical challenge in civil engineering testing. This study explores a novel quantitative detection method based on ultrasonic time-frequency dual-domain analysis. It establishes a mapping relationship between sleeve grouting compactness and characteristic parameters. First, this study made samples with gradient defects for two types of grouting sleeves, G18 and G20. These included four cases: 2D, 4D, 6D defects (where D is the diameter of the grouting sleeve), and no-defect. Then, an ultrasonic input/output data acquisition system was established. Three-dimensional sound field distribution data were obtained through an orthogonal… More >

  • Open Access

    ARTICLE

    PMCFusion: A Parallel Multi-Dimensional Complementary Network for Infrared and Visible Image Fusion

    Xu Tao1, Qiang Xiao2, Zhaoqi Jin2, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.070790 - 09 December 2025

    Abstract Image fusion technology aims to generate a more informative single image by integrating complementary information from multi-modal images. Despite the significant progress of deep learning-based fusion methods, existing algorithms are often limited to single or dual-dimensional feature interactions, thus struggling to fully exploit the profound complementarity between multi-modal images. To address this, this paper proposes a parallel multi-dimensional complementary fusion network, termed PMCFusion, for the task of infrared and visible image fusion. The core of this method is its unique parallel three-branch fusion module, PTFM, which pioneers the parallel synergistic perception and efficient integration of… More >

  • Open Access

    ARTICLE

    Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems

    Junxiang Li1,2, Zhipeng Dong2, Ben Han3, Jianqiao Chen3, Xinxin Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070816 - 10 November 2025

    Abstract Owing to their global search capabilities and gradient-free operation, metaheuristic algorithms are widely applied to a wide range of optimization problems. However, their computational demands become prohibitive when tackling high-dimensional optimization challenges. To effectively address these challenges, this study introduces cooperative metaheuristics integrating dynamic dimension reduction (DR). Building upon particle swarm optimization (PSO) and differential evolution (DE), the proposed cooperative methods C-PSO and C-DE are developed. In the proposed methods, the modified principal components analysis (PCA) is utilized to reduce the dimension of design variables, thereby decreasing computational costs. The dynamic DR strategy implements periodic… More >

  • Open Access

    ARTICLE

    High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework

    Zheng Yao*, Puqing Chang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068248 - 10 November 2025

    Abstract As Internet of Things (IoT) applications expand, Mobile Edge Computing (MEC) has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices. Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies, conflicting objectives, and limited resources. This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC. We jointly consider task heterogeneity, high-dimensional objectives, and flexible resource scheduling, modeling the problem as a Many-objective optimization. To solve it, we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on More >

  • Open Access

    REVIEW

    Advances in the Improved Element-Free Galerkin Methods: A Comprehensive Review

    Heng Cheng1, Yichen Yang1, Yumin Cheng2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2853-2894, 2025, DOI:10.32604/cmes.2025.073178 - 23 December 2025

    Abstract The element-free Galerkin (EFG) method, which constructs shape functions via moving least squares (MLS) approximation, represents a fundamental and widely studied meshless method in numerical computation. Although it achieves high computational accuracy, the shape functions are more complex than those in the conventional finite element method (FEM), resulting in great computational requirements. Therefore, improving the computational efficiency of the EFG method represents an important research direction. This paper systematically reviews significant contributions from domestic and international scholars in advancing the EFG method. Including the improved element-free Galerkin (IEFG) method, various interpolating EFG methods, four distinct More >

  • Open Access

    ARTICLE

    Adsorption behavior and mechanism of heavy metal ions from acid mine drainage using two-dimensional MoS2 nanosheets

    K. Wanga,b,*, G. L. Lianc, Y. F. Qiaod

    Chalcogenide Letters, Vol.22, No.10, pp. 889-904, 2025, DOI:10.15251/CL.2025.2210.889

    Abstract The remediation of acid mine drainage (AMD), characterized by its high concentrations of toxic metal ions and low pH, presents a significant environmental challenge. In this study, exfoliated two-dimensional MoS nanosheets were prepared using a liquid-phase ultrasonication method and evaluated for their efficiency in removing Cd²⁺, Cu²⁺, and Pb²⁺ from aqueous solutions. Detailed structural and morphological analyses confirmed that the exfoliation process significantly enhanced surface area, pore volume, and exposure of reactive sulfur sites. Through isotherm and kinetic modeling analyses, the adsorption behavior was found to align with the Langmuir model and pseudo-second-order kinetic equation, which implies More >

  • Open Access

    ARTICLE

    Efficient Image Deraining through a Stage-Wise Dual-Residual Network with Cross-Dimensional Spatial Attention

    Tiantian Wang1,2, Zhihua Hu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2357-2381, 2025, DOI:10.32604/cmes.2025.073640 - 26 November 2025

    Abstract Rain streaks introduced by atmospheric precipitation significantly degrade image quality and impair the reliability of high-level vision tasks. We present a novel image deraining framework built on a three-stage dual-residual architecture that progressively restores rain-degraded content while preserving fine structural details. Each stage begins with a multi-scale feature extractor and a channel attention module that adaptively emphasizes informative representations for rain removal. The core restoration is achieved via enhanced dual-residual blocks, which stabilize training and mitigate feature degradation across layers. To further refine representations, we integrate cross-dimensional spatial attention supervised by ground-truth guidance, ensuring that More >

  • Open Access

    ARTICLE

    An Efficient GPU Solver for Maximizing Fundamental Eigenfrequency in Large-Scale Three-Dimensional Topology Optimization

    Tianyuan Qi1, Junpeng Zhao1,2,*, Chunjie Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 127-151, 2025, DOI:10.32604/cmes.2025.070769 - 30 October 2025

    Abstract A major bottleneck in large-scale eigenfrequency topology optimization is the repeated solution of the generalized eigenvalue problem. This work presents an efficient graphics processing unit (GPU) solver for three-dimensional (3D) topology optimization that maximizes the fundamental eigenfrequency. The Successive Iteration of Analysis and Design (SIAD) framework is employed to avoid solving a full eigenproblem at every iteration. The sequential approximation of the eigenpairs is solved by the GPU-accelerated multigrid-preconditioned conjugate gradient (MGPCG) method to efficiently improve the eigenvectors along with the topological evolution. The cluster-mean approach is adopted to address the non-differentiability issue caused by… More > Graphic Abstract

    An Efficient GPU Solver for Maximizing Fundamental Eigenfrequency in Large-Scale Three-Dimensional Topology Optimization

  • Open Access

    ARTICLE

    Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization

    Zeinel Momynkulov1,2, Azhar Tursynova1,2,*, Olzhas Olzhayev1,2, Akhanseri Ikramov1,2, Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 891-918, 2025, DOI:10.32604/cmes.2025.068615 - 30 October 2025

    Abstract Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position, velocity, and acceleration must be satisfied. Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility, motivating control-aware trajectory generation. This study presents a novel model predictive control (MPC) framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization. Unlike conventional interpolation techniques such as cubic splines, B-splines, and linear interpolation, which neglect physical constraints and system dynamics, the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while… More >

Displaying 1-10 on page 1 of 545. Per Page