Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    REVIEW

    Advanced Feature Selection Techniques in Medical Imaging—A Systematic Literature Review

    Sunawar Khan1, Tehseen Mazhar1,2,*, Naila Sammar Naz1, Fahed Ahmed1, Tariq Shahzad3, Atif Ali4, Muhammad Adnan Khan5,*, Habib Hamam6,7,8,9

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2347-2401, 2025, DOI:10.32604/cmc.2025.066932 - 23 September 2025

    Abstract Feature selection (FS) plays a crucial role in medical imaging by reducing dimensionality, improving computational efficiency, and enhancing diagnostic accuracy. Traditional FS techniques, including filter, wrapper, and embedded methods, have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data. Deep learning-based FS methods, particularly Convolutional Neural Networks (CNNs) and autoencoders, have demonstrated superior performance but lack interpretability. Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution, offering improved accuracy and explainability. Furthermore, integrating multi-modal imaging data (e.g., Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron… More >

  • Open Access

    ARTICLE

    Advancing Railway Infrastructure Monitoring: A Case Study on Railway Pole Detection

    Yuxin Yan, Huirui Wang, Jingyi Wen, Zerong Lan, Liang Wang*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3059-3073, 2025, DOI:10.32604/cmc.2024.057949 - 16 April 2025

    Abstract The development of artificial intelligence (AI) technologies creates a great chance for the iteration of railway monitoring. This paper proposes a comprehensive method for railway utility pole detection. The framework of this paper on railway systems consists of two parts: point cloud preprocessing and railway utility pole detection. This method overcomes the challenges of dynamic environment adaptability, reliance on lighting conditions, sensitivity to weather and environmental conditions, and visual occlusion issues present in 2D images and videos, which utilize mobile LiDAR (Laser Radar) acquisition devices to obtain point cloud data. Due to factors such as… More >

  • Open Access

    ARTICLE

    Intrusion Detection in NSL-KDD Dataset Using Hybrid Self-Organizing Map Model

    Noveela Iftikhar1, Mujeeb Ur Rehman1, Mumtaz Ali Shah2, Mohammed J. F. Alenazi3, Jehad Ali4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 639-671, 2025, DOI:10.32604/cmes.2025.062788 - 11 April 2025

    Abstract Intrusion attempts against Internet of Things (IoT) devices have significantly increased in the last few years. These devices are now easy targets for hackers because of their built-in security flaws. Combining a Self-Organizing Map (SOM) hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting (XGBoost) for multi-class classification can improve network traffic intrusion detection. The proposed model is evaluated on the NSL-KDD dataset. The hybrid approach outperforms the baseline line models, Multilayer perceptron model, and SOM-KNN (k-nearest neighbors) model in precision, recall, and F1-score, highlighting the proposed More >

  • Open Access

    ARTICLE

    A Low Complexity ML-Based Methods for Malware Classification

    Mahmoud E. Farfoura1,*, Ahmad Alkhatib1, Deema Mohammed Alsekait2,*, Mohammad Alshinwan3,7, Sahar A. El-Rahman4, Didi Rosiyadi5, Diaa Salama AbdElminaam6,7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4833-4857, 2024, DOI:10.32604/cmc.2024.054849 - 12 September 2024

    Abstract The article describes a new method for malware classification, based on a Machine Learning (ML) model architecture specifically designed for malware detection, enabling real-time and accurate malware identification. Using an innovative feature dimensionality reduction technique called the Interpolation-based Feature Dimensionality Reduction Technique (IFDRT), the authors have significantly reduced the feature space while retaining critical information necessary for malware classification. This technique optimizes the model’s performance and reduces computational requirements. The proposed method is demonstrated by applying it to the BODMAS malware dataset, which contains 57,293 malware samples and 77,142 benign samples, each with a 2381-feature… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Machine Learning Algorithms in Reduced Dimensional Spaces

    Kaveh Heidary1,*, Venkata Atluri1, John Bland2

    Journal of Cyber Security, Vol.6, pp. 69-87, 2024, DOI:10.32604/jcs.2024.051196 - 28 August 2024

    Abstract This paper investigates the impact of reducing feature-vector dimensionality on the performance of machine learning (ML) models. Dimensionality reduction and feature selection techniques can improve computational efficiency, accuracy, robustness, transparency, and interpretability of ML models. In high-dimensional data, where features outnumber training instances, redundant or irrelevant features introduce noise, hindering model generalization and accuracy. This study explores the effects of dimensionality reduction methods on binary classifier performance using network traffic data for cybersecurity applications. The paper examines how dimensionality reduction techniques influence classifier operation and performance across diverse performance metrics for seven ML models. Four… More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621 - 26 March 2024

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    A Novel Human Interaction Framework Using Quadratic Discriminant Analysis with HMM

    Tanvir Fatima Naik Bukht1, Naif Al Mudawi2, Saud S. Alotaibi3, Abdulwahab Alazeb2, Mohammed Alonazi4, Aisha Ahmed AlArfaj5, Ahmad Jalal1, Jaekwang Kim6,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1557-1573, 2023, DOI:10.32604/cmc.2023.041335 - 29 November 2023

    Abstract Human-human interaction recognition is crucial in computer vision fields like surveillance, human-computer interaction, and social robotics. It enhances systems’ ability to interpret and respond to human behavior precisely. This research focuses on recognizing human interaction behaviors using a static image, which is challenging due to the complexity of diverse actions. The overall purpose of this study is to develop a robust and accurate system for human interaction recognition. This research presents a novel image-based human interaction recognition method using a Hidden Markov Model (HMM). The technique employs hue, saturation, and intensity (HSI) color transformation to… More >

  • Open Access

    ARTICLE

    Dimensionality Reduction Using Optimized Self-Organized Map Technique for Hyperspectral Image Classification

    S. Srinivasan, K. Rajakumar*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2481-2496, 2023, DOI:10.32604/csse.2023.040817 - 28 July 2023

    Abstract

    The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors. The high correlation between these features and the noises greatly affects the classification performances. To overcome this, dimensionality reduction techniques are widely used. Traditional image processing applications recently propose numerous deep learning models. However, in hyperspectral image classification, the features of deep learning models are less explored. Thus, for efficient hyperspectral image classification, a depth-wise convolutional neural network is presented in this research work. To handle the dimensionality issue in the classification process, an optimized self-organized map model is employed

    More >

  • Open Access

    ARTICLE

    Customer Churn Prediction Framework of Inclusive Finance Based on Blockchain Smart Contract

    Fang Yu1, Wenbin Bi2, Ning Cao3,4,*, Hongjun Li1, Russell Higgs5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1-17, 2023, DOI:10.32604/csse.2023.018349 - 26 May 2023

    Abstract In view of the fact that the prediction effect of influential financial customer churn in the Internet of Things environment is difficult to achieve the expectation, at the smart contract level of the blockchain, a customer churn prediction framework based on situational awareness and integrating customer attributes, the impact of project hotspots on customer interests, and customer satisfaction with the project has been built. This framework introduces the background factors in the financial customer environment, and further discusses the relationship between customers, the background of customers and the characteristics of pre-lost customers. The improved Singular… More >

  • Open Access

    ARTICLE

    Hyperspectral Images-Based Crop Classification Scheme for Agricultural Remote Sensing

    Imran Ali1, Zohaib Mushtaq2, Saad Arif3, Abeer D. Algarni4,*, Naglaa F. Soliman4, Walid El-Shafai5,6

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 303-319, 2023, DOI:10.32604/csse.2023.034374 - 20 January 2023

    Abstract Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications. Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension. The classification accuracy of hyperspectral images (HSI) increases significantly by employing both spatial and spectral features. For this work, the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared (VNIR) range of 400 to 1000 nm wavelength within 180 spectral bands. The dataset is collected for nine different crops on… More >

Displaying 1-10 on page 1 of 34. Per Page