Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    A Sensitive Wavebands Identification System for Smart Farming

    M. Kavitha*, M. Sujaritha

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 245-257, 2022, DOI:10.32604/csse.2022.023320 - 23 March 2022

    Abstract Sensing the content of macronutrients in the agricultural soil is an essential task in precision agriculture. It helps the farmers in the optimal use of fertilizers. It reduces the cost of food production and also the negative environmental impacts on atmosphere and water bodies due to indiscriminate dosage of fertilizers. The traditional chemical-based laboratory soil analysis methods do not serve the purpose as they are hardly suitable for site specific soil management. Moreover, the spectral range used in the chemical-based laboratory soil analysis may be of 350–2500 nm, which leads to redundancy and confusion. Developing sensors… More >

  • Open Access

    ARTICLE

    Parkinson's Detection Using RNN-Graph-LSTM with Optimization Based on Speech Signals

    Ahmed S. Almasoud1, Taiseer Abdalla Elfadil Eisa2, Fahd N. Al-Wesabi3,4, Abubakar Elsafi5, Mesfer Al Duhayyim6, Ishfaq Yaseen7, Manar Ahmed Hamza7,*, Abdelwahed Motwakel7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 871-886, 2022, DOI:10.32604/cmc.2022.024596 - 24 February 2022

    Abstract Early detection of Parkinson's Disease (PD) using the PD patients’ voice changes would avoid the intervention before the identification of physical symptoms. Various machine learning algorithms were developed to detect PD detection. Nevertheless, these ML methods are lack in generalization and reduced classification performance due to subject overlap. To overcome these issues, this proposed work apply graph long short term memory (GLSTM) model to classify the dynamic features of the PD patient speech signal. The proposed classification model has been further improved by implementing the recurrent neural network (RNN) in batch normalization layer of GLSTM… More >

  • Open Access

    ARTICLE

    An Improved Parameter Dimensionality Reduction Approach Based on a Fast Marching Method for Automatic History Matching

    Hairong Zhang1, Yongde Gao2, Wei Li2, Deng Liu3,*, Jing Cao3, Luoyi Huang3, Xun Zhong3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 609-628, 2022, DOI:10.32604/fdmp.2022.019446 - 22 February 2022

    Abstract History matching is a critical step in reservoir numerical simulation algorithms. It is typically hindered by difficulties associated with the high-dimensionality of the problem and the gradient calculation approach. Here, a multi-step solving method is proposed by which, first, a Fast marching method (FMM) is used to calculate the pressure propagation time and determine the single-well sensitive area. Second, a mathematical model for history matching is implemented using a Bayesian framework. Third, an effective decomposition strategy is adopted for parameter dimensionality reduction. Finally, a localization matrix is constructed based on the single-well sensitive area data More >

  • Open Access

    ARTICLE

    Optimized LSTM with Dimensionality Reduction Based Gene Expression Data Classification

    S. Jacophine Susmi*

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1139-1152, 2022, DOI:10.32604/iasc.2022.023865 - 08 February 2022

    Abstract The classification of cancer subtypes is substantial for the diagnosis and treatment of cancer. However, the gene expression data used for cancer subtype classification are high dimensional in nature and small in sample size. In this paper, an efficient dimensionality reduction with optimized long short term memory, algorithm (OLSTM) is used for gene expression data classification. The main three stages of the proposed method are explicitly pre-processing, dimensional reduction, and gene expression data classification. In the pre-processing method, the missing values and redundant values are removed for high-quality data. Following, the dimensional reduction is done More >

  • Open Access

    ARTICLE

    Cryptographic Lightweight Encryption Algorithm with Dimensionality Reduction in Edge Computing

    D. Jerusha*, T. Jaya

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1121-1132, 2022, DOI:10.32604/csse.2022.022997 - 08 February 2022

    Abstract Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers, providers and the workers. Requisition for Edge Computing based items have been increasing tremendously. Apart from the advantages it holds, there remain lots of objections and restrictions, which hinders it from accomplishing the need of consumers all around the world. Some of the limitations are constraints on computing and hardware, functions and accessibility, remote administration and connectivity. There is also a backlog in security due to its inability to create a… More >

  • Open Access

    ARTICLE

    A Machine-Learning Framework to Improve Wi-Fi Based Indoorpositioning

    Venkateswari Pichaimani1, K. R. Manjula2,*

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 383-397, 2022, DOI:10.32604/iasc.2022.023105 - 05 January 2022

    Abstract The indoor positioning system comprises portable wireless devices that aid in finding the location of people or objects within the buildings. Identification of the items is through the capacity level of the signal received from various access points (i.e., Wi-Fi routers). The positioning of the devices utilizing some algorithms has drawn more attention from the researchers. Yet, the designed algorithm still has problems for accurate floor planning. So, the accuracy of position estimation with minimum error is made possible by introducing Gaussian Distributive Feature Embedding based Deep Recurrent Perceptive Neural Learning (GDFE-DRPNL), a novel framework.… More >

  • Open Access

    ARTICLE

    Intrusion Detection Method of Internet of Things Based on Multi GBDT Feature Dimensionality Reduction and Hierarchical Traffic Detection

    Taifeng Pan*

    Journal of Quantum Computing, Vol.3, No.4, pp. 161-171, 2021, DOI:10.32604/jqc.2021.025373 - 10 January 2022

    Abstract The rapid development of Internet of Things (IoT) technology has brought great convenience to people’s life. However, the security protection capability of IoT is weak and vulnerable. Therefore, more protection needs to be done for the security of IoT. The paper proposes an intrusion detection method for IoT based on multi GBDT feature reduction and hierarchical traffic detection model. Firstly, GBDT is used to filter the features of IoT traffic data sets BoT-IoT and UNSW-NB15 to reduce the traffic feature dimension. At the same time, in order to improve the reliability of feature filtering, this… More >

  • Open Access

    ARTICLE

    A Novel Technique for Early Detection of COVID-19

    Mohammad Yamin1,*, Adnan Ahmed Abi Sen2, Zenah Mahmoud AlKubaisy1, Rahaf Almarzouki1

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2283-2298, 2021, DOI:10.32604/cmc.2021.017433 - 13 April 2021

    Abstract COVID-19 is a global pandemic disease, which results from a dangerous coronavirus attack, and spreads aggressively through close contacts with infected people and artifacts. So far, there is not any prescribed line of treatment for COVID-19 patients. Measures to control the disease are very limited, partly due to the lack of knowledge about technologies which could be effectively used for early detection and control the disease. Early detection of positive cases is critical in preventing further spread, achieving the herd immunity, and saving lives. Unfortunately, so far we do not have effective toolkits to diagnose… More >

  • Open Access

    ARTICLE

    Performance of Lung Cancer Prediction Methods Using Different Classification Algorithms

    Yasemin Gültepe*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2015-2028, 2021, DOI:10.32604/cmc.2021.014631 - 05 February 2021

    Abstract In 2018, 1.76 million people worldwide died of lung cancer. Most of these deaths are due to late diagnosis, and early-stage diagnosis significantly increases the likelihood of a successful treatment for lung cancer. Machine learning is a branch of artificial intelligence that allows computers to quickly identify patterns within complex and large datasets by learning from existing data. Machine-learning techniques have been improving rapidly and are increasingly used by medical professionals for the successful classification and diagnosis of early-stage disease. They are widely used in cancer diagnosis. In particular, machine learning has been used in… More >

  • Open Access

    ARTICLE

    A Novel Image Retrieval Method with Improved DCNN and Hash

    Yan Zhou, Lili Pan*, Rongyu Chen, Weizhi Shao

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 77-86, 2020, DOI:10.32604/jihpp.2020.010486 - 11 November 2020

    Abstract In large-scale image retrieval, deep features extracted by Convolutional Neural Network (CNN) can effectively express more image information than those extracted by traditional manual methods. However, the deep feature dimensions obtained by Deep Convolutional Neural Network (DCNN) are too high and redundant, which leads to low retrieval efficiency. We propose a novel image retrieval method, which combines deep features selection with improved DCNN and hash transform based on high-dimension features reduction to gain lowdimension deep features and realizes efficient image retrieval. Firstly, the improved network is based on the existing deep model to build a… More >

Displaying 21-30 on page 3 of 33. Per Page