Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    CNN Channel Attention Intrusion Detection System Using NSL-KDD Dataset

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4319-4347, 2024, DOI:10.32604/cmc.2024.050586

    Abstract Intrusion detection systems (IDS) are essential in the field of cybersecurity because they protect networks from a wide range of online threats. The goal of this research is to meet the urgent need for small-footprint, highly-adaptable Network Intrusion Detection Systems (NIDS) that can identify anomalies. The NSL-KDD dataset is used in the study; it is a sizable collection comprising 43 variables with the label’s “attack” and “level.” It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks (CNN). Furthermore, this dataset makes it easier to conduct… More >

  • Open Access

    ARTICLE

    Detection of Student Engagement in E-Learning Environments Using EfficientnetV2-L Together with RNN-Based Models

    Farhad Mortezapour Shiri1,*, Ehsan Ahmadi2, Mohammadreza Rezaee1, Thinagaran Perumal1

    Journal on Artificial Intelligence, Vol.6, pp. 85-103, 2024, DOI:10.32604/jai.2024.048911

    Abstract Automatic detection of student engagement levels from videos, which is a spatio-temporal classification problem is crucial for enhancing the quality of online education. This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos. The evaluation of these models utilizes the DAiSEE dataset, a public repository capturing student affective states in e-learning scenarios. The initial model integrates EfficientNetV2-L with Gated Recurrent Unit (GRU) and attains an accuracy of 61.45%. Subsequently, the second model combines EfficientNetV2-L with bidirectional GRU (Bi-GRU), yielding More >

  • Open Access

    ARTICLE

    Machine-Learning Based Packet Switching Method for Providing Stable High-Quality Video Streaming in Multi-Stream Transmission

    Yumin Jo1, Jongho Paik2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4153-4176, 2024, DOI:10.32604/cmc.2024.047046

    Abstract Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream. However, when the transmission environment is unstable, problems such as reduction in the lifespan of equipment due to frequent switching and interruption, delay, and stoppage of services may occur. Therefore, applying a machine learning (ML) method, which is possible to automatically judge and classify network-related service anomaly, and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when… More >

  • Open Access

    ARTICLE

    A Machine Learning-Based Attack Detection and Prevention System in Vehicular Named Data Networking

    Arif Hussain Magsi1,*, Ali Ghulam2, Saifullah Memon1, Khalid Javeed3, Musaed Alhussein4, Imad Rida5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1445-1465, 2023, DOI:10.32604/cmc.2023.040290

    Abstract Named Data Networking (NDN) is gaining a significant attention in Vehicular Ad-hoc Networks (VANET) due to its in-network content caching, name-based routing, and mobility-supporting characteristics. Nevertheless, existing NDN faces three significant challenges, including security, privacy, and routing. In particular, security attacks, such as Content Poisoning Attacks (CPA), can jeopardize legitimate vehicles with malicious content. For instance, attacker host vehicles can serve consumers with invalid information, which has dire consequences, including road accidents. In such a situation, trust in the content-providing vehicles brings a new challenge. On the other hand, ensuring privacy and preventing unauthorized access… More >

  • Open Access

    ARTICLE

    A Machine-Learning Approach for the Prediction of Fly-Ash Concrete Strength

    Shanqing Shao1, Aimin Gong1, Ran Wang1, Xiaoshuang Chen1, Jing Xu2, Fulai Wang1,*, Feipeng Liu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3007-3019, 2023, DOI:10.32604/fdmp.2023.029545

    Abstract The composite exciter and the CaO to Na2SO4 dosing ratios are known to have a strong impact on the mechanical strength of fly-ash concrete. In the present study a hybrid approach relying on experiments and a machine-learning technique has been used to tackle this problem. The tests have shown that the optimal admixture of CaO and Na2SO4 alone is 8%. The best 3D mechanical strength of fly-ash concrete is achieved at 8% of the compound activator; If the 28-day mechanical strength is considered, then, the best performances are obtained at 4% of the compound activator. Moreover,… More >

  • Open Access

    ARTICLE

    Machine-Learning-Enabled Obesity Level Prediction Through Electronic Health Records

    Saeed Ali Alsareii1, Muhammad Awais2,*, Abdulrahman Manaa Alamri1, Mansour Yousef AlAsmari1, Muhammad Irfan3, Mohsin Raza2, Umer Manzoor4

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3715-3728, 2023, DOI:10.32604/csse.2023.035687

    Abstract Obesity is a critical health condition that severely affects an individual’s quality of life and well-being. The occurrence of obesity is strongly associated with extreme health conditions, such as cardiac diseases, diabetes, hypertension, and some types of cancer. Therefore, it is vital to avoid obesity and or reverse its occurrence. Incorporating healthy food habits and an active lifestyle can help to prevent obesity. In this regard, artificial intelligence (AI) can play an important role in estimating health conditions and detecting obesity and its types. This study aims to see obesity levels in adults by implementing… More >

  • Open Access

    ARTICLE

    Blockchain-Based Decentralized Authentication Model for IoT-Based E-Learning and Educational Environments

    Osama A. Khashan1,*, Sultan Alamri2, Waleed Alomoush3, Mutasem K. Alsmadi4, Samer Atawneh2, Usama Mir5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3133-3158, 2023, DOI:10.32604/cmc.2023.036217

    Abstract In recent times, technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners. Integrating the Internet of Things (IoT) into education can facilitate the teaching and learning process and expand the context in which students learn. Nevertheless, learning data is very sensitive and must be protected when transmitted over the network or stored in data centers. Moreover, the identity and the authenticity of interacting students, instructors, and staff need to be verified to mitigate the impact of attacks. However, most of the current security and… More >

  • Open Access

    ARTICLE

    Real Objects Understanding Using 3D Haptic Virtual Reality for E-Learning Education

    Samia Allaoua Chelloug1,*, Hamid Ashfaq2, Suliman A. Alsuhibany3, Mohammad Shorfuzzaman4, Abdulmajeed Alsufyani4, Ahmad Jalal2, Jeongmin Park5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1607-1624, 2023, DOI:10.32604/cmc.2023.032245

    Abstract In the past two decades, there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification. The major research areas of this field include object detection and object recognition. Moreover, wireless communication technologies are presently adopted and they have impacted the way of education that has been changed. There are different phases of changes in the traditional system. Perception of three-dimensional (3D) from two-dimensional (2D) image is one of the demanding tasks. Because human can easily perceive but making 3D using software will take… More >

  • Open Access

    ARTICLE

    Intelligent Energy Consumption For Smart Homes Using Fused Machine-Learning Technique

    Hanadi AlZaabi1, Khaled Shaalan1, Taher M. Ghazal2,3,*, Muhammad A. Khan4,5, Sagheer Abbas6, Beenu Mago7, Mohsen A. A. Tomh6, Munir Ahmad6

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2261-2278, 2023, DOI:10.32604/cmc.2023.031834

    Abstract Energy is essential to practically all exercises and is imperative for the development of personal satisfaction. So, valuable energy has been in great demand for many years, especially for using smart homes and structures, as individuals quickly improve their way of life depending on current innovations. However, there is a shortage of energy, as the energy required is higher than that produced. Many new plans are being designed to meet the consumer’s energy requirements. In many regions, energy utilization in the housing area is 30%–40%. The growth of smart homes has raised the requirement for… More >

Displaying 1-10 on page 1 of 33. Per Page