Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (906)
  • Open Access

    ARTICLE

    An Energy Trading Method Based on Alliance Blockchain and Multi-Signature

    Hongliang Tian, Jiaming Wang*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1611-1629, 2024, DOI:10.32604/cmc.2023.046698

    Abstract Blockchain, known for its secure encrypted ledger, has garnered attention in financial and data transfer realms, including the field of energy trading. However, the decentralized nature and identity anonymity of user nodes raise uncertainties in energy transactions. The broadcast consensus authentication slows transaction speeds, and frequent single-point transactions in multi-node settings pose key exposure risks without protective measures during user signing. To address these, an alliance blockchain scheme is proposed, reducing the resource-intensive identity verification among nodes. It integrates multi-signature functionality to fortify user resources and transaction security. A novel multi-signature process within this framework involves neutral nodes established through… More >

  • Open Access

    ARTICLE

    Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics

    Hang Cui1, Hongbo Ren1,*, Qiong Wu1,2, Hang Lv1, Qifen Li1,2, Weisheng Zhou3

    Energy Engineering, Vol.121, No.3, pp. 581-601, 2024, DOI:10.32604/ee.2023.047470

    Abstract Cascading faults have been identified as the primary cause of multiple power outages in recent years. With the emergence of integrated energy systems (IES), the conventional approach to analyzing power grid cascading faults is no longer appropriate. A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance. In this study, an innovative analysis method for cascading faults in integrated heat and electricity systems (IHES) is proposed. It considers the degradation characteristics of transmission and energy supply components in the system to address the impact of component aging on cascading faults. Firstly, degradation models for the current carrying… More >

  • Open Access

    ARTICLE

    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

    Jingyu Li1,2, Mushui Wang1,2,*, Zhaoyuan Wu1,3, Guizhen Tian1,2, Na Zhang1,2, Guangchen Liu1,2

    Energy Engineering, Vol.121, No.3, pp. 619-641, 2024, DOI:10.32604/ee.2023.044862

    Abstract Given the “double carbon” objective and the drive toward low-carbon power, investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors. However, further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen (P2H) technology, focusing on participating in combined carbon-electricity market transactions. This study introduces an innovative Electro-Hydrogen Regional Energy System (EHRES) in this context. This system integrates renewable energy sources, a P2H system, cogeneration units, and energy storage devices. The core purpose of this integration is to optimize renewable energy… More > Graphic Abstract

    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

  • Open Access

    ARTICLE

    A Predictive Energy Management Strategies for Mining Dump Trucks

    Yixuan Yu, Yulin Wang*, Qingcheng Li, Bowen Jiao

    Energy Engineering, Vol.121, No.3, pp. 769-788, 2024, DOI:10.32604/ee.2023.044042

    Abstract The plug-in hybrid vehicles (PHEV) technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks. Meanwhile, plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies (EMS). Therefore, a series hybrid system is constructed based on a 100-ton mining dump truck in this paper. And inspired by the dynamic programming (DP) algorithm, a predictive equivalent consumption minimization strategy (P-ECMS) based on the DP optimization result is proposed. Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm, the P-ECMS strategy… More >

  • Open Access

    REVIEW

    Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques

    Paramjeet Kaur1, Krishna Teerth Chaturvedi1, Mohan Lal Kolhe2,*

    Energy Engineering, Vol.121, No.3, pp. 557-579, 2024, DOI:10.32604/ee.2024.043159

    Abstract In the increasingly decentralized energy environment, economical power dispatching from distributed generations (DGs) is crucial to minimizing operating costs, optimizing resource utilization, and guaranteeing a consistent and sustainable supply of electricity. A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability. The choice of optimization technique for economic power dispatching from DGs depends on a number of factors, such as the size and complexity of the power system, the availability of computational resources, and the specific requirements of the… More >

  • Open Access

    ARTICLE

    Research on Regulation Method of Energy Storage System Based on Multi-Stage Robust Optimization

    Zaihe Yang1,*, Shuling Wang1, Runhang Zhu1, Jiao Cui2, Ji Su2, Liling Chen3

    Energy Engineering, Vol.121, No.3, pp. 807-820, 2024, DOI:10.32604/ee.2023.028167

    Abstract To address the scheduling problem involving energy storage systems and uncertain energy, we propose a method based on multi-stage robust optimization. This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method, which helps overcome the limitations of traditional methods in terms of time scale. The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day. To achieve this, a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power. The generalized… More >

  • Open Access

    ARTICLE

    Smart Energy Management System Using Machine Learning

    Ali Sheraz Akram1, Sagheer Abbas1, Muhammad Adnan Khan2,3,5, Atifa Athar4, Taher M. Ghazal5,6, Hussam Al Hamadi7,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 959-973, 2024, DOI:10.32604/cmc.2023.032216

    Abstract Energy management is an inspiring domain in developing of renewable energy sources. However, the growth of decentralized energy production is revealing an increased complexity for power grid managers, inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand. The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization, minimize energy costs without affecting production, and minimize environmental effects. Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings, which necessitates energy optimization and increased user comfort. To… More >

  • Open Access

    ARTICLE

    Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications

    A. Asbayou1,*, G.P. Smestad2, I. Ismail1, A. Soussi1, A. Elfanaoui1, L. Bouhouch1, A. Ihlal1

    Energy Engineering, Vol.121, No.2, pp. 243-258, 2024, DOI:10.32604/ee.2024.046409

    Abstract In this paper, a detailed model of a photovoltaic (PV) panel is used to study the accumulation of dust on solar panels. The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass, as it increases the reflection of light by particles. This phenomenon, commonly known as the “soiling effect”, presents a significant challenge to PV systems on a global scale. Two basic models of the equivalent circuits of a solar cell can be found, namely the single-diode model and the two-diode models. The limitation of efficiency data in manufacturers’ datasheets has encouraged us to develop an… More > Graphic Abstract

    Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications

  • Open Access

    ARTICLE

    Two-Stage Optimal Scheduling of Community Integrated Energy System

    Ming Li1,*, Rifucairen Fu1, Tuerhong Yaxiaer1, Yunping Zheng1, Abiao Huang2, Ronghui Liu2, Shunfu Lin2

    Energy Engineering, Vol.121, No.2, pp. 405-424, 2024, DOI:10.32604/ee.2023.044509

    Abstract From the perspective of a community energy operator, a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads. The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system (IES) before and after; the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme, taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of… More >

  • Open Access

    ARTICLE

    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side… More >

Displaying 31-40 on page 4 of 906. Per Page