Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    REVIEW

    Mesenchymal stem cell secretome and nanotechnology: Combining therapeutic strategies

    ADRIANA L. FERREIRA, GUSTAVO C. PARIS, ALINE DE A. AZEVEDO, ERIKA A. C. CORTEZ, SIMONE N. CARVALHO, LAIS DE CARVALHO, ALESSANDRA A. THOLE*

    BIOCELL, Vol.46, No.8, pp. 1807-1813, 2022, DOI:10.32604/biocell.2022.019363

    Abstract Mesenchymal stem cells (MSC) have pushed the field of stem cell-based therapies by inducing tissue regeneration, immunosuppression, and angiogenesis mainly through vesicles and soluble factors release (paracrine signaling). MSC-extracellular vesicles (MSC-EV) adaptable secretome and homing to injured sites allowed researchers to unlock a new era of cell-free based therapy. In parallel, nanoparticles (NP) have been explored in contributing to transport and drug delivery systems, giving drugs desired physical-chemical properties to exploit cell behavior. However, NPs can be quickly recognized by immune cells and cleared from circulation. In this viewpoint, we explore how combining both therapeutic strategies can improve efficacy and… More >

  • Open Access

    VIEWPOINT

    Mesenchymal stem cells, secretome and biomaterials in in-vivo animal models: Regenerative medicine application in cutaneous wound healing

    MASSIMO CONESE1,*, AURELIO PORTINCASA2

    BIOCELL, Vol.46, No.8, pp. 1815-1826, 2022, DOI:10.32604/biocell.2022.019448

    Abstract The treatment of nonhealing and chronic cutaneous wounds still needs a clinical advancement to be effective. Both mesenchymal stem cells (MSCs), obtained from different sources, and their secretome derived thereof (especially exosomes) can activate signaling pathways related to promotion of cell migration, vascularization, collagen deposition, and inflammatory response demonstrating prohealing, angiogenetic and anti-scarring capacities. On the other hand, biodegradable biomimetic scaffolds can facilitate endogenous cell attachment and proliferation as well as extracellular matrix production. In this Review, we revise the complex composites made by biomimetic scaffolds, mainly hydrogels, and MSC-derived exosomes constructed for cutaneous wound healing. Studies demonstrate that there… More >

  • Open Access

    ARTICLE

    Ex vivo cartilage explant model for the evaluation of chondrocyte-targeted exosomes

    KAN OUYANG1,2,#, MEIQUAN XU3,#, YUJIE LIANG4, XIAO XU2, LIMEI XU2, CAINING WEN1,2, ZHUAN QIN2, YIXIN XIE2, HUAWEI ZHANG5, LI DUAN2,*, DAPING WANG1,2,5,*

    BIOCELL, Vol.46, No.6, pp. 1521-1526, 2022, DOI:10.32604/biocell.2022.018788

    Abstract There is no efficient tracking system available for the therapeutic molecules delivered to cartilage. The dense matrix covering the cartilage surface is the main biological barrier that the therapeutic molecules must overcome. In this study, we aimed to establish a system that can dynamically and effectively track the therapeutic molecules delivered to cartilage. To this aim, we adopted bovine and human cartilage explants as ex vivo models for chondrocyte-targeted exosome dispersion. The efficiency of drug delivery was evaluated using frozen sections. The results of this study showed that the penetration and distribution of chondrocyte-targeted exosomes in cartilage explants can be… More >

  • Open Access

    VIEWPOINT

    MSCs-exosomes in regeneration medicine: Current evidence and future perspectives

    BENSHUAI YOU1, HUI QIAN1,2,*

    BIOCELL, Vol.46, No.6, pp. 1459-1463, 2022, DOI:10.32604/biocell.2022.018378

    Abstract Exosomes, especially from mesenchymal stem cells, have attracted extensive attention in regeneration medicine. Mesenchymal stem cells derived exosomes (MSCs-exosomes) have shown anti-inflammatory, anti-oxidant, anti-apoptosis and tissue regeneration effects in a variety of tissue injury repair models. MSCs-exosomes hold many excellent properties such as low immunogenicity, biocompatibility, and targeting capability. With the in-depth study on the generation and function of exosomes, MSCs-exosomes are considered to be the bright stars in the field of regenerative medicine. However, there are still many obstacles to overcome in terms of exosomes isolation, clinical trials and safety evaluation. In this article, what we should focus on… More >

  • Open Access

    ARTICLE

    Mesenchymal stem cell-derived exosome: The likely game-changer in stem cell research

    DICKSON KOFI WIREDU OCANSEY1,2,*, XINWEI XU1, LU ZHANG1, FEI MAO1,*

    BIOCELL, Vol.46, No.5, pp. 1169-1172, 2022, DOI:10.32604/biocell.2022.018470

    Abstract Stem cell research is a promising area of transplantation and regenerative medicine with tremendous potential for improving the clinical treatment and diagnostic options across a variety of conditions and enhancing understanding of human development. Over the past few decades, mesenchymal stem cell (MSCs) studies have exponentially increased with a promising outcome. However, regardless of the huge investment and the research attention given to stem cell research, FDA approval for clinical use is still lacking. Amid the challenges confronting stem cell research as a cell-based product, there appears to be evidence of superior effect and heightened potential success in its expressed… More >

  • Open Access

    RETRACTION

    Retraction: M1 macrophage-derived exosomes moderate the differentiation of bone marrow mesenchymal stem cells

    TAILIN WU1,#; XIANG ZHOU2,#; CANHUA YE1; WENCAN LU1; HAITAO LIN1; YANZHE WEI1; ZEKAI KE1; ZHENGJI HUANG1; JIANZHOU LUO1; HUIREN TAO1; CHUNGUANG DUAN1,*

    BIOCELL, Vol.46, No.4, pp. 1123-1123, 2022, DOI:10.32604/biocell.2022.020679

    Abstract This article has no abstract. More >

  • Open Access

    VIEWPOINT

    Stem cells in intervertebral disc regeneration–more talk than action?

    PETRA KRAUS1,*, ANKITA SAMANTA1, SINA LUFKIN2, THOMAS LUFKIN1

    BIOCELL, Vol.46, No.4, pp. 893-898, 2022, DOI:10.32604/biocell.2022.018432

    Abstract Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of extracellular vesicles with purposeful cargo… More >

  • Open Access

    VIEWPOINT

    Controversies in therapeutic application of mesenchymal stem cell-derived secretome

    FERENC SIPOS*, GYÖRGYI MŰZES

    BIOCELL, Vol.46, No.4, pp. 903-906, 2022, DOI:10.32604/biocell.2022.018200

    Abstract Though mesenchymal stem cells (MSCs) are considered as an important pillar of regenerative medicine, their regenerative potential has been shown to be limited in several pathological conditions. The adverse properties of MSC-based cell therapy have drawn attention to the therapeutic use of MSC-derived secretome. However, MSC-originated exosomes and microvesicles can also possess a significant impact on disease development, including cancer. By interchanging secretome, MSCs can interact with tumor cells and promote mutual exchange/induction of cellular markers. In addition, enzymes secreted into and activated within exosomes can result in the acquisition of new tumor cell properties. Therefore, therapeutic applications of MSC-derived… More >

  • Open Access

    REVIEW

    The effect of exosomes in transferring TET signaling alterations

    SERGIU PASCA1,*, ANCUTA JURJ2

    BIOCELL, Vol.46, No.3, pp. 579-581, 2022, DOI:10.32604/biocell.2022.017926

    Abstract Ten eleven translocation (TET) enzymes are composed of three representatives: TET1/2/3 which are involved in the hydroxymethylation of methylated cytosines. Because of the wide array of processes that are governed by these epigenetic marks, there have been a wide range of clinical effects associated with TET alterations. Even though many research groups have focused on analyzing the effect of TET alterations within certain cells, few have taken into consideration the effect of TET in the context of intercellular communication. One important entity through which intercellular communication occurs is represented by exosomes. Thus, in the current viewpoint we discussed the direct… More >

  • Open Access

    ARTICLE

    A549/DDP derived exosomes can affect cisplatin chemosensitivity via transporting CXCR4 to A549 cells

    MINGMING FANG1,#, NING GE2,#, JIANFANG LIU3,*, YAYUN CUI2,*

    BIOCELL, Vol.46, No.3, pp. 711-720, 2022, DOI:10.32604/biocell.2022.016714

    Abstract The resistance of cancer cells to the anti-cancer drugs is the most important reason that affecting the efficacy of the non-small cell lung cancer (NSCLC) chemotherapy; thus, to explore the underlying mechanism of drug resistance of NSCLC medications is urgently needed for improving the therapeutic efficacy of current anti-NSCLC chemotherapies. The aim of the present study is to explore the roles of exosomes in the chemosensitivity of A549 cells and the related mechanism. A549 cells and cisplatin resistant cell line A549/DDP derived exosomes were isolated, and the expressions of CXCR4 were compared. Then, after cisplatin treatment, A549 cells were treated… More >

Displaying 21-30 on page 3 of 39. Per Page