Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (262)
  • Open Access

    ARTICLE

    A Parallelized Grey Wolf Optimizer-Based Fuzzy C-Means for Fast and Accurate MRI Segmentation on GPU

    Mohammed Debakla1,*, Ali Mezaghrani1, Khalifa Djemal2, Imane Zouaneb1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071927 - 09 December 2025

    Abstract Magnetic Resonance Imaging (MRI) has a pivotal role in medical image analysis, for its ability in supporting disease detection and diagnosis. Fuzzy C-Means (FCM) clustering is widely used for MRI segmentation due to its ability to handle image uncertainty. However, the latter still has countless limitations, including sensitivity to initialization, susceptibility to local optima, and high computational cost. To address these limitations, this study integrates Grey Wolf Optimization (GWO) with FCM to enhance cluster center selection, improving segmentation accuracy and robustness. Moreover, to further refine optimization, Fuzzy Entropy Clustering was utilized for its distinctive features… More >

  • Open Access

    ARTICLE

    FMCSNet: Mobile Devices-Oriented Lightweight Multi-Scale Object Detection via Fast Multi-Scale Channel Shuffling Network Model

    Lijuan Huang1, Xianyi Liu2, Jinping Liu2,*, Pengfei Xu2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068818 - 10 November 2025

    Abstract The ubiquity of mobile devices has driven advancements in mobile object detection. However, challenges in multi-scale object detection in open, complex environments persist due to limited computational resources. Traditional approaches like network compression, quantization, and lightweight design often sacrifice accuracy or feature representation robustness. This article introduces the Fast Multi-scale Channel Shuffling Network (FMCSNet), a novel lightweight detection model optimized for mobile devices. FMCSNet integrates a fully convolutional Multilayer Perceptron (MLP) module, offering global perception without significantly increasing parameters, effectively bridging the gap between CNNs and Vision Transformers. FMCSNet achieves a delicate balance between computation… More >

  • Open Access

    PROCEEDINGS

    A Fixed-Time Anti-Saturation Backstepping Guidance Law with Acceleration Constraints

    Tianfeng Li*, Yonghua Fan

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011408

    Abstract A fixed-time anti-saturation backstepping guidance law (FTABGL) is designed for interceptor under acceleration input constraints. Firstly, an adaptive fixed-time anti-saturation compensator (AFAC) is proposed to ensure the stability of saturated system and drive it to faster leave the saturated region. Compared with conventional anti-saturation compensators, the auxiliary variable of AFAC is able to realize faster response speed and higher convergent precision when saturation disappears, which avoids the impact on convergent characteristics of original tracking error. In addition, the novel adaptive law in AFAC can further shorten the duration of saturation and improve the convergent speed… More >

  • Open Access

    ARTICLE

    Hybrid CNN Architecture for Hot Spot Detection in Photovoltaic Panels Using Fast R-CNN and GoogleNet

    Carlos Quiterio Gómez Muñoz1, Fausto Pedro García Márquez2,*, Jorge Bernabé Sanjuán3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3369-3386, 2025, DOI:10.32604/cmes.2025.069225 - 30 September 2025

    Abstract Due to the continuous increase in global energy demand, photovoltaic solar energy generation and associated maintenance requirements have significantly expanded. One critical maintenance challenge in photovoltaic installations is detecting hot spots, localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage. Traditional methods for detecting these defects rely on manual inspections using thermal imaging, which are costly, labor-intensive, and impractical for large-scale installations. This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture. The first convolutional neural network efficiently detects More >

  • Open Access

    REVIEW

    Transforming the Leather Industry: A Comprehensive Review on Leather Alternatives

    Alehegn Atalay Birlie*

    Journal of Renewable Materials, Vol.13, No.9, pp. 1783-1802, 2025, DOI:10.32604/jrm.2025.02025-0039 - 22 September 2025

    Abstract This study explores vegan leather, an eco-friendly substitute for conventional animal-derived leather. Using materials like polyurethane, pineapple leaves, cork, and recycled plastics, vegan leather aims to transform the fashion industry and consumer products while addressing environmental concerns. Despite its advantages, challenges related to availability and durability persist. The booming market for vegan leather is expected to reach billions of dollars, reflecting a broader societal shift towards sustainable and cruelty-free alternatives. The review traces the historical development of vegan leather from its origins in Germany to modern innovations like Mylo and Piñatex. By comparing these materials More >

  • Open Access

    ARTICLE

    A Time-Domain Irregular Wave Model with Different Random Numbers for FOWT Support Structures

    Shen-Haw Ju*, Yi-Chen Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1631-1654, 2025, DOI:10.32604/cmes.2025.067679 - 31 August 2025

    Abstract This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform (IFFT). Considering the substantial displacement effects that Floating Offshore Wind Turbine (FOWT) support structures undergo when subjected to wave loads, the time-domain wave method is more suitable, while the frequency-domain method requiring IFFT cannot be used for moving bodies. Nonetheless, the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle. Thus, the paper incorporates various numerical schemes, including parallel computing and extrapolation of wave forces… More >

  • Open Access

    ARTICLE

    Diff-Fastener: A Few-Shot Rail Fastener Anomaly Detection Framework Based on Diffusion Model

    Peng Sun1,2, Dechen Yao1,2,*, Jianwei Yang1,2, Quanyu Long1,2

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1221-1239, 2025, DOI:10.32604/sdhm.2025.066098 - 05 September 2025

    Abstract Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions. However, unsupervised anomaly detection methods based on diffusion models reduce the dependence on the number of anomalous samples but suffer from too many iterations and excessive smoothing of reconstructed images. In this work, we have established a rail fastener anomaly detection framework called Diff-Fastener, the diffusion model is introduced into the fastener detection task, half of the normal samples are converted into anomaly samples online in the model training stage, and One-Step denoising… More >

  • Open Access

    ARTICLE

    Marine Ship Detection Based on Twin Feature Pyramid Network and Spatial Attention

    Huagang Jin, Yu Zhou*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 751-768, 2025, DOI:10.32604/cmc.2025.067867 - 29 August 2025

    Abstract Recently, ship detection technology has been applied extensively in the marine security monitoring field. However, achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales, slightly occluded objects, uneven illumination, and sea clutter. To address these issues, we propose a novel ship detection approach, i.e., the Twin Feature Pyramid Network and Data Augmentation (TFPN-DA), which mainly consists of three modules. First, to eliminate the negative effects of slightly occluded objects and uneven illumination, we propose the Spatial Attention within the Twin Feature Pyramid Network (SA-TFPN) method, which is based More >

  • Open Access

    ARTICLE

    CGAN Accelerated Subdivision Surface BEM for Acoustic Scattering

    Ziyu Cui, Zijun Wei, Xiaohui Yuan, Pei Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1045-1070, 2025, DOI:10.32604/cmes.2025.066659 - 31 July 2025

    Abstract At present, noise reduction has become an urgent challenge across various fields. Whether in the context of household appliances in daily life or in the enhancement of stealth performance in military equipment, noise control technologies play a critical role. This study introduces a computational framework for simulating Helmholtz equation-governed acoustic scattering using a boundary element method (BEM) integrated with Loop subdivision surfaces. By adopting the Loop subdivision scheme—a widely used computer-aided design (CAD) technique—the framework unifies geometric representation and physical field discretization, ensuring seamless compatibility with industrial CAD workflows. The core innovation lies in the More >

  • Open Access

    ARTICLE

    FastSECOND: Real-Time 3D Detection via Swin-Transformer Enhanced SECOND with Geometry-Aware Learning

    Xinyu Li1,2, Gang Wan2, Xinyang Chen3, Liyue Qie3, Xinnan Fan3, Pengfei Shi3, Jin Wan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1071-1090, 2025, DOI:10.32604/cmes.2025.064775 - 31 July 2025

    Abstract The inherent limitations of 2D object detection, such as inadequate spatial reasoning and susceptibility to environmental occlusions, pose significant risks to the safety and reliability of autonomous driving systems. To address these challenges, this paper proposes an enhanced 3D object detection framework (FastSECOND) based on an optimized SECOND architecture, designed to achieve rapid and accurate perception in autonomous driving scenarios. Key innovations include: (1) Replacing the Rectified Linear Unit (ReLU) activation functions with the Gaussian Error Linear Unit (GELU) during voxel feature encoding and region proposal network stages, leveraging partial convolution to balance computational efficiency… More >

Displaying 1-10 on page 1 of 262. Per Page