Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Angle of Attack Between Blood Flow and Mitral Valve Leaflets in Hypertrophic Obstructive Cardiomyopathy: An In Vivo Multi-patient CT-based FSI Study

    Long Deng1, Xueying Huang2,3,*, Heng Zuo4, Yuan Zheng2, Chun Yang5, Yunhu Song1, Dalin Tang6

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 115-125, 2018, DOI:10.31614/cmes.2018.04076

    Abstract The mechanisms of systolic anterior motion (SAM) of the mitral valve in hypertrophic obstructive cardiomyopathy (HOCM) remain unclear. To investigate the angle of attack between blood flow and mitral valve leaflets at pre-SAM time point, patient-specific CT-based computational models were constructed for 5 patients receiving septal myectomy surgery to obtain pre- and post-operative 2D vector flow mapping. The comparisons between pre- and post-operative angles of attack based on 2D vector flow mapping of 5 patients were performed. It was found that there was no statistically significant difference between pre- and post-operative angles of attack (61.1±t More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation for Membrane Deployment using SPH and ALE Formulations

    Essam Al-Bahkali1,2, Hisham Elkenani1, Souli Mhamed3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.5, pp. 405-424, 2015, DOI:10.3970/cmes.2015.104.405

    Abstract Simulation of airbag and membrane deployment under pressurized gas problems becomes more and more the focus of computational engineering, where FEM (Finite element Methods) for structural mechanics and Finite Volume for CFD are dominant. New formulations have been developed for FSI applications using mesh free methods as SPH method, (Smooth Particle Hydrodynamic). Up to these days very little has been done to compare different methods and assess which one would be more suitable. For small deformation, FEM Lagrangian formulation can solve structure interface and material boundary accurately, the main limitation of the formulation is high… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of a Fluid Structure Interaction Benchmarking

    M. Razzaq1, C. Tsotskas2, S. Turek1, T. Kipouros2, M. Savill2, J. Hron3

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.4, pp. 303-337, 2013, DOI:10.3970/cmes.2013.090.303

    Abstract The integration and application of a new multi-objective tabu search optimization algorithm for Fluid Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process for real world applications and to achieve higher performance of the whole system for the four considered objectives. The described system combines the optimizer with a well established FSI solver which is based on the fully implicit, monolithic formuFlation of the problem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver resolves the proposed fluid-structure interaction benchmark which describes the self-induced elastic deformation of a beam More >

  • Open Access

    ARTICLE

    In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models

    Chun Yang1, Dalin Tang2, Chun Yuan3, Thomas S. Hatsukami4, Jie Zheng5, Pamela K. Woodard5

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.3, pp. 233-246, 2007, DOI:10.3970/cmes.2007.019.233

    Abstract It has been recognized that fluid-structure interactions (FSI) play an important role in cardiovascular disease initiation and development. However, in vivo MRI multi-component FSI models for human carotid atherosclerotic plaques with bifurcation and quantitative comparisons of FSI models with fluid-only or structure-only models are currently lacking in the literature. A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture. Both artery wall and plaque components were assumed to be hyperelastic,… More >

Displaying 21-30 on page 3 of 24. Per Page