Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (283)
  • Open Access


    Parallel Finite Element Method and Time Stepping Control for Non-Isothermal Poro-Elastic Problems

    Wenqing Wang1, Thomas Schnicke2, Olaf Kolditz3

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 217-236, 2011, DOI:10.3970/cmc.2011.021.217

    Abstract This work focuses on parallel finite element simulation of thermal hydraulic and mechanical (THM) coupled processes in porous media, which is a common phenomenon in geological applications such as nuclear waste repository and CO2 storage facilities. The Galerkin finite element method is applied to solve the derived partial differential equations. To deal with the coupling terms among the equations, the momentum equation is solved individually in a monolithic manner, and moreover their solving processes are incorporated into the solving processes of nonisothermal hydraulic equation and heat transport equation in a staggered manner. The computation task arising from the present method… More >

  • Open Access


    Hybrid Finite Element Method Based on Novel General Solutions for Helmholtz-Type Problems

    Zhuo-Jia Fu1,2, Wen Chen1, Qing-Hua Qin2,3

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 187-208, 2011, DOI:10.3970/cmc.2011.021.187

    Abstract This paper presents a hybrid finite element model (FEM) with a new type of general solution as interior trial functions, named as HGS-FEM. A variational functional corresponding to the proposed general solution is then constructed for deriving the element stiffness matrix of the proposed element model and the corresponding existence of extremum is verified. Then the assumed intra-element potential field is constructed by a linear combination of novel general solutions at the points on the element boundary under consideration. Furthermore, the independent frame field is introduced to guarantee the intra-element continuity. The present scheme inherits the advantages of hybrid Trefftz… More >

  • Open Access


    Numerical Simulation of Fluid-Structure Interaction of LNG Prestressed Storage Tank under Seismic Influence

    X. H. Du1, X. P. Shen1

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 225-242, 2010, DOI:10.3970/cmc.2010.020.225

    Abstract Aim of this paper is to estimate the integrity of liquefied natural gas (LNG) prestressed storage tank under seismic influence. The coupled Eulerian-Lagrangian (CEL) analysis technique is used to simulate the fluid-structure interaction between LNG and the cylinder of LNG prestressed storage tank. The 3-D model of LNG has been dispersed by Eulerian mesh that is different from traditional analysis method which is called the added mass method. Meanwhile, both of the 3-D models of prestressed rebar and concrete structure are dispersed by Lagrangian mesh. Following conclusions are obtained: 1) Natural frequency of the whole model has been obtained by… More >

  • Open Access


    Indentation Load-Displacement Relations for the Spherical Indentation of Elastic Film/Substrate Structures

    S. N.V.R.K. Kurapati1, Y. C. Lu1, F. Yang2

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 1-18, 2010, DOI:10.3970/cmc.2010.020.001

    Abstract The spherical indentation of elastic film /substrate structures is analyzed using the finite element method. The load-displacement curves of the film /substrate structures of various configurations are obtained and analyzed. A generalized power law relation is established, which can be used to analyze the load-displacement curve of elastic film /substrate systems under spherical indentations. The indentation load is dependent on the modulus ratio of the film to the substrate and film thickness. A semi-analytical expression for the power of the power law relation is also obtained as a function of the normalized film thickness and normalized film modulus, which can… More >

  • Open Access


    The Molecular Dynamic Finite Element Method (MDFEM)

    Lutz Nasdala1 , Andreas Kempe1 and Raimund Rolfes1

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 57-104, 2010, DOI:10.3970/cmc.2010.019.057

    Abstract In order to understand the underlying mechanisms of inelastic material behavior and nonlinear surface interactions, which can be observed on macroscale as damping, softening, fracture, delamination, frictional contact etc., it is necessary to examine the molecular scale. Force fields can be applied to simulate the rearrangement of chemical and physical bonds. However, a simulation of the atomic interactions is very costly so that classical molecular dynamics (MD) is restricted to structures containing a low number of atoms such as carbon nanotubes. The objective of this paper is to show how MD simulations can be integrated into the finite element method… More >

  • Open Access


    Numerical Study of PVB Laminated Windshield Cracking Upon Human Head Impact

    Jun Xu1,2, Yibing Li1, Xi Chen2,3, Yuan Yan2,3, Dongyun Ge4,1, Bohan Liu1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 183-212, 2010, DOI:10.3970/cmc.2010.018.183

    Abstract The crack pattern in a PVB laminated windshield upon head impact is of considerable interest because it contains important information on energy mitigation, pedestrian protection, and accident reconstruction. We carry out a systematic numerical study based on the extended finite element method (XFEM), to investigate the effects of various material and system variables, including the impact speed, effective head mass, PVB interlayer material thickness and property, windshield curvature, aspect ratio and size, boundary constraint, impact angle and off-center impact, on the parameters characterizing the resulting crack pattern, i.e. the crack length, crack angle and circumferential crack shape. General relations bridging… More >

  • Open Access


    Theoretical Study on the Bilayer Buckling Technique for Thin Film Metrology

    Fei Jia1, Xiu-Peng Zheng1,2, Yan-Ping Cao1,3, Xi-Qiao Feng1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 105-120, 2010, DOI:10.3970/cmc.2010.018.105

    Abstract Recently, a novel technique based on the wrinkling of a bilayer composite film resting on a compliant substrate was proposed to measure the elastic moduli of thin films. In this paper, this technique is studied via theoretical analysis and finite element simulations. We find that under an applied compressive strain, the composite system may exhibit various buckling modes, depending upon the applied compressive strain, geometric and material parameters of the system. The physical mechanisms underlying the occurrence of the two most typical buckling modes are analyzed from the viewpoint of energy. When the intermediate layer is much thicker than the… More >

  • Open Access


    Interfaces Between two Dissimilar Elastic Materials

    Chyanbin Hwu1, T.L. Kuo, Y.C. Chen

    CMC-Computers, Materials & Continua, Vol.11, No.3, pp. 165-184, 2009, DOI:10.3970/cmc.2009.011.165

    Abstract In this paper the near tip solutions for interface corners written in terms of the stress intensity factors are presented in a unified expression. This single expression is applicable for any kinds of interface corners including corners and cracks in homogeneous materials as well as interface corners and interface cracks lying between two dissimilar materials, in which the materials can be any kinds of linear elastic anisotropic materials or piezoelectric materials. Through this unified expression of near tip solutions, the singular orders of stresses and their associated stress/electric intensity factors for different kinds of interface problems can be determined through… More >

  • Open Access


    Determination of Temperature-Dependent Elasto-Plastic Properties of Thin-Film by MD Nanoindentation Simulations and an Inverse GA/FEM Computational Scheme

    D. S. Liu1, C. Y. Tsai1, S. R. Lyu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 147-164, 2009, DOI:10.3970/cmc.2009.011.147

    Abstract This study presents a novel numerical method for extracting the tempe -rature-dependent mechanical properties of the gold and aluminum thin-films. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of the thin substrate nanoindented at temperatures ranging from 300-900 K. A simple but effective procedure involving genetic algorithm (GA) and finite element method (FEM) is implemented to extract the material constants of the gold and aluminum substrates. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus, yield stress and the tangent modulus of the thin film… More >

  • Open Access


    Numerical Investigation of the Multiple Dynamic Crack Branching Phenomena

    T. Nishioka1, S. Tchouikov1, T. Fujimoto1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 147-154, 2006, DOI:10.3970/cmc.2006.003.147

    Abstract In this study, phenomena of multiple branching of dynamically propagating crack are investigated numerically. The complicated paths of cracks propagating in a material are simulated by moving finite element method based on Delaunay automatic triangulation (MFEM BODAT), which was extended for such problems. For evaluation of fracture parameters for propagating and branching cracks switching method of the path independent dynamic J integral was used. Using these techniques the generation phase simulation of multiple dynamic crack branching was performed. Various dynamic fracture parameters, which are almost impossible to obtain by experimental technique alone, were accurately evaluated. More >

Displaying 271-280 on page 28 of 283. Per Page