Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (238)
  • Open Access

    ARTICLE

    System Dynamics Forecasting on Taiwan Power Supply Chain

    Zhiqiu Yu1,*, Shuo-Yan Chou1, Phan Nguyen Ky Phuc2, Tiffany Hui-Kuang Yu3

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 1191-1205, 2022, DOI:10.32604/csse.2022.021239 - 10 November 2021

    Abstract This research aims to study the sustainability of Taiwan power supply chain based on system dynamics forecasting. The paper tries to investigate electricity shortage effects not only on the industrial side, but also from the standpoint of society. In our model, different forecasting methods such as linear regression, time series analysis, and gray forecasting are also considered to predict the parameters. Further tests such as the structure, dimension, historical fit, and sensitivity of the model are also conducted in this paper. Through analysis forecasting result, we believe that the demand for electricity in Taiwan will More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Predictive Model for P2P Energy Trading in TEM

    Pudi Sekhar1, T. J. Benedict Jose2, Velmurugan Subbiah Parvathy3, E. Laxmi Lydia4, Seifedine Kadry5, Kuntha Pin6, Yunyoung Nam7,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1473-1487, 2022, DOI:10.32604/cmc.2022.022110 - 03 November 2021

    Abstract With the incorporation of distributed energy systems in the electric grid, transactive energy market (TEM) has become popular in balancing the demand as well as supply adaptively over the grid. The classical grid can be updated to the smart grid by the integration of Information and Communication Technology (ICT) over the grids. The TEM allows the Peer-to-Peer (P2P) energy trading in the grid that effectually connects the consumer and prosumer to trade energy among them. At the same time, there is a need to predict the load for effectual P2P energy trading and can be… More >

  • Open Access

    ARTICLE

    SMOTEDNN: A Novel Model for Air Pollution Forecasting and AQI Classification

    Mohd Anul Haq*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1403-1425, 2022, DOI:10.32604/cmc.2022.021968 - 03 November 2021

    Abstract Rapid industrialization and urbanization are rapidly deteriorating ambient air quality, especially in the developing nations. Air pollutants impose a high risk on human health and degrade the environment as well. Earlier studies have used machine learning (ML) and statistical modeling to classify and forecast air pollution. However, these methods suffer from the complexity of air pollution dataset resulting in a lack of efficient classification and forecasting of air pollution. ML-based models suffer from improper data pre-processing, class imbalance issues, data splitting, and hyperparameter tuning. There is a gap in the existing ML-based studies on air… More >

  • Open Access

    ARTICLE

    An Intelligent Fine-Tuned Forecasting Technique for Covid-19 Prediction Using Neuralprophet Model

    Savita Khurana1, Gaurav Sharma2, Neha Miglani3, Aman Singh4, Abdullah Alharbi5, Wael Alosaimi5, Hashem Alyami6, Nitin Goyal7,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 629-649, 2022, DOI:10.32604/cmc.2022.021884 - 03 November 2021

    Abstract COVID-19, being the virus of fear and anxiety, is one of the most recent and emergent of various respiratory disorders. It is similar to the MERS-COV and SARS-COV, the viruses that affected a large population of different countries in the year 2012 and 2002, respectively. Various standard models have been used for COVID-19 epidemic prediction but they suffered from low accuracy due to lesser data availability and a high level of uncertainty. The proposed approach used a machine learning-based time-series Facebook NeuralProphet model for prediction of the number of death as well as confirmed cases… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Solar Radiation Predictive Model Using Weather Forecasts

    Sathish Babu Pandu1,*, A. Sagai Francis Britto2, Pudi Sekhar3, P. Vijayarajan4, Amani Abdulrahman Albraikan5, Fahd N. Al-Wesabi6, Mesfer Al Duhayyim7

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 109-124, 2022, DOI:10.32604/cmc.2022.021015 - 03 November 2021

    Abstract Solar energy has gained attention in the past two decades, since it is an effective renewable energy source that causes no harm to the environment. Solar Irradiation Prediction (SIP) is essential to plan, schedule, and manage photovoltaic power plants and grid-based power generation systems. Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time. In this scenario, commonly available Artificial Intelligence (AI) technique can be trained over past values of irradiance as well as weather-related parameters… More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Transmission in the United States Using Google Search Trends

    Meshrif Alruily1, Mohamed Ezz1,2, Ayman Mohamed Mostafa1,3, Nacim Yanes1,4, Mostafa Abbas5, Yasser El-Manzalawy5,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1751-1768, 2022, DOI:10.32604/cmc.2022.020714 - 03 November 2021

    Abstract Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources. Due to the exponential spread of the COVID-19 infection worldwide, several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature. To accelerate scientific and public health insights into the spread and impact of COVID-19, Google released the Google COVID-19 search trends symptoms open-access dataset. Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the… More >

  • Open Access

    ARTICLE

    On Mixed Model for Improvement in Stock Price Forecasting

    Qunhui Zhang1, Mengzhe Lu3,4, Liang Dai2,*

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 795-809, 2022, DOI:10.32604/csse.2022.019987 - 25 October 2021

    Abstract Stock market trading is an activity in which investors need fast and accurate information to make effective decisions. But the fact is that forecasting stock prices by using various models has been suffering from low accuracy, slow convergence, and complex parameters. This study aims to employ a mixed model to improve the accuracy of stock price prediction. We present how to use a random walk based on jump-diffusion, to obtain stock predictions with a good-fitting degree by adjusting different parameters. Aimed at getting better parameters and then using the time series model to predict the… More >

  • Open Access

    ARTICLE

    An Intelligent Forecasting Model for Disease Prediction Using Stack Ensembling Approach

    Shobhit Verma1 , Nonita Sharma1 , Aman Singh2 , Abdullah Alharbi3 , Wael Alosaimi3 , Hashem Alyami4, Deepali Gupta5, Nitin Goyal5 ,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6041-6055, 2022, DOI:10.32604/cmc.2022.021747 - 11 October 2021

    Abstract This research work proposes a new stack-based generalization ensemble model to forecast the number of incidences of conjunctivitis disease. In addition to forecasting the occurrences of conjunctivitis incidences, the proposed model also improves performance by using the ensemble model. Weekly rate of acute Conjunctivitis per 1000 for Hong Kong is collected for the duration of the first week of January 2010 to the last week of December 2019. Pre-processing techniques such as imputation of missing values and logarithmic transformation are applied to pre-process the data sets. A stacked generalization ensemble model based on Auto-ARIMA (Autoregressive… More >

  • Open Access

    ARTICLE

    SutteARIMA: A Novel Method for Forecasting the Infant Mortality Rate in Indonesia

    Ansari Saleh Ahmar1,2,*, Eva Boj del Val3, M. A. El Safty4, Samirah AlZahrani4, Hamed El-Khawaga5,6

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6007-6022, 2022, DOI:10.32604/cmc.2022.021382 - 11 October 2021

    Abstract This study focuses on the novel forecasting method (SutteARIMA) and its application in predicting Infant Mortality Rate data in Indonesia. It undertakes a comparison of the most popular and widely used four forecasting methods: ARIMA, Neural Networks Time Series (NNAR), Holt-Winters, and SutteARIMA. The data used were obtained from the website of the World Bank. The data consisted of the annual infant mortality rate (per 1000 live births) from 1991 to 2019. To determine a suitable and best method for predicting Infant Mortality rate, the forecasting results of these four methods were compared based on More >

  • Open Access

    ARTICLE

    Forecasting E-Commerce Adoption Based on Bidirectional Recurrent Neural Networks

    Abdullah Ali Salamai1,*, Ather Abdulrahman Ageeli1, El-Sayed M. El-kenawy2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5091-5106, 2022, DOI:10.32604/cmc.2022.021268 - 11 October 2021

    Abstract E-commerce refers to a system that allows individuals to purchase and sell things online. The primary goal of e-commerce is to offer customers the convenience of not going to a physical store to make a purchase. They will purchase the item online and have it delivered to their home within a few days. The goal of this research was to develop machine learning algorithms that might predict e-commerce platform sales. A case study has been designed in this paper based on a proposed continuous Stochastic Fractal Search (SFS) based on a Guided Whale Optimization Algorithm… More >

Displaying 171-180 on page 18 of 238. Per Page