Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (196)
  • Open Access

    ARTICLE

    Stock Price Forecasting: An Echo State Network Approach

    Guang Sun1, Jingjing Lin1,*, Chen Yang1, Xiangyang Yin1, Ziyu Li1, Peng Guo1,2, Junqi Sun3, Xiaoping Fan1, Bin Pan1

    Computer Systems Science and Engineering, Vol.36, No.3, pp. 509-520, 2021, DOI:10.32604/csse.2021.014189 - 18 January 2021

    Abstract Forecasting stock prices using deep learning models suffers from problems such as low accuracy, slow convergence, and complex network structures. This study developed an echo state network (ESN) model to mitigate such problems. We compared our ESN with a long short-term memory (LSTM) network by forecasting the stock data of Kweichow Moutai, a leading enterprise in China’s liquor industry. By analyzing data for 120, 240, and 300 days, we generated forecast data for the next 40, 80, and 100 days, respectively, using both ESN and LSTM. In terms of accuracy, ESN had the unique advantage… More >

  • Open Access

    ARTICLE

    An LSTM Based Forecasting for Major Stock Sectors Using COVID Sentiment

    Ayesha Jabeen1, Sitara Afzal1, Muazzam Maqsood1, Irfan Mehmood2, Sadaf Yasmin1, Muhammad Tabish Niaz3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1191-1206, 2021, DOI:10.32604/cmc.2021.014598 - 12 January 2021

    Abstract Stock market forecasting is an important research area, especially for better business decision making. Efficient stock predictions continue to be significant for business intelligence. Traditional short-term stock market forecasting is usually based on historical market data analysis such as stock prices, moving averages, or daily returns. However, major events’ news also contains significant information regarding market drivers. An effective stock market forecasting system helps investors and analysts to use supportive information regarding the future direction of the stock market. This research proposes an efficient model for stock market prediction. The current proposed study explores the More >

  • Open Access

    ARTICLE

    An Advanced Approach for Improving the Prediction Accuracy of Natural Gas Price

    Quanjia Zuo1, Fanyi Meng1,*, Yang Bai2

    Energy Engineering, Vol.118, No.2, pp. 303-322, 2021, DOI:10.32604/EE.2021.013239 - 23 December 2020

    Abstract As one of the most important commodity futures, the price forecasting of natural gas futures is of great significance for hedging and risk aversion. This paper mainly focuses on natural gas futures pricing which considers seasonality fluctuations. In order to study this issue, we propose a modified approach called six-factor model, in which the influence of seasonal fluctuations are eliminated in every random factor. Using Monte Carlo method, we first assess and comparative analyze the fitting ability of three-factor model and six-factor model for the out of sample data. It is found that six-factor model More >

  • Open Access

    ARTICLE

    Smart CardioWatch System for Patients with Cardiovascular Diseases Who Live Alone

    Raisa Nazir Ahmed Kazi1,*, Manjur Kolhar2, Faiza Rizwan2

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1237-1250, 2021, DOI:10.32604/cmc.2020.012707 - 26 November 2020

    Abstract The widespread use of smartwatches has increased their specific and complementary activities in the health sector for patient’s prognosis. In this study, we propose a framework referred to as smart forecasting CardioWatch (SCW) to measure the heart-rate variation (HRV) for patients with myocardial infarction (MI) who live alone or are outside their homes. In this study, HRV is used as a vital alarming sign for patients with MI. The performance of the proposed framework is measured using machine learning and deep learning techniques, namely, support vector machine, logistic regression, and decision-tree classification techniques. The results More >

  • Open Access

    ARTICLE

    Nonlinear Time Series Analysis of Pathogenesis of COVID-19 Pandemic Spread in Saudi Arabia

    Sunil Kumar Sharma1, Shivam Bhardwaj2,*, Rashmi Bhardwaj3, Majed Alowaidi1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 805-825, 2021, DOI:10.32604/cmc.2020.011937 - 30 October 2020

    Abstract This article discusses short–term forecasting of the novel Corona Virus (COVID-19) data for infected and recovered cases using the ARIMA method for Saudi Arabia. The COVID-19 data was obtained from the Worldometer and MOH (Ministry of Health, Saudi Arabia). The data was analyzed for the period from March 2, 2020 (the first case reported) to June 15, 2020. Using ARIMA (2, 1, 0), we obtained the short forecast up to July 02, 2020. Several statistical parameters were tested for the goodness of fit to evaluate the forecasting methods. The results show that ARIMA (2, 1, More >

  • Open Access

    ARTICLE

    Forecast the Influenza Pandemic Using Machine Learning

    Muhammad Adnan Khan1,*, Wajhe Ul Husnain Abidi1,2, Mohammed A. Al Ghamdi3, Sultan H. Almotiri3, Shazia Saqib1, Tahir Alyas1, Khalid Masood Khan1, Nasir Mahmood4

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 331-340, 2021, DOI:10.32604/cmc.2020.012148 - 30 October 2020

    Abstract Forecasting future outbreaks can help in minimizing their spread. Influenza is a disease primarily found in animals but transferred to humans through pigs. In 1918, influenza became a pandemic and spread rapidly all over the world becoming the cause behind killing one-third of the human population and killing one-fourth of the pig population. Afterwards, that influenza became a pandemic several times on a local and global levels. In 2009, influenza ‘A’ subtype H1N1 again took many human lives. The disease spread like in a pandemic quickly. This paper proposes a forecasting modeling system for the… More >

  • Open Access

    ARTICLE

    Ontology-Supported Double-Level Model Construction for International Disaster Medical Relief Resource Forecasting

    Min Zhu1,2,3,#, Huiyu Jin1,#, Ruxue Chen1, Quanyi Huang2,3, Shaobo Zhong4, Guang Tian1,*

    Intelligent Automation & Soft Computing, Vol.26, No.5, pp. 1097-1109, 2020, DOI:10.32604/iasc.2020.010140

    Abstract In a disaster, mass casualties lead to a surge in demand for medical services. Some relief actions have been criticized for being ill-adapted to dominating medical needs. This research established a disaster medical relief planning model in 3 steps. 1. Establishing the two-level conceptual model. 2. Using the ontology method to describe the hierarchy and relating rules of the terms and concepts associated with the model. 3. Using an ontology-support casebased reasoning approach to build the case similarity matching process, which can provide a more efficient system for decision support. A case study validated the More >

  • Open Access

    ARTICLE

    Combining Trend-Based Loss with Neural Network for Air Quality Forecasting in Internet of Things

    Weiwen Kong1, Baowei Wang1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 849-863, 2020, DOI:10.32604/cmes.2020.012818 - 12 October 2020

    Abstract Internet of Things (IoT) is a network that connects things in a special union. It embeds a physical entity through an intelligent perception system to obtain information about the component at any time. It connects various objects. IoT has the ability of information transmission, information perception,andinformationprocessing.Theairqualityforecastinghasalways been an urgent problem, which affects people’s quality of life seriously. So far, many air quality prediction algorithms have been proposed, which can be mainly classifed into two categories. One is regression-based prediction, the other is deep learning-based prediction. Regression-based prediction is aimed to make use of the classical… More >

  • Open Access

    ARTICLE

    Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm

    Xianghui Lu1, Junliang Fan2, Lifeng Wu1,*, Jianhua Dong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 699-723, 2020, DOI:10.32604/cmes.2020.011004 - 12 October 2020

    Abstract It is important for regional water resources management to know the agricultural water consumption information several months in advance. Forecasting reference evapotranspiration (ET0) in the next few months is important for irrigation and reservoir management. Studies on forecasting of multiple-month ahead ET0 using machine learning models have not been reported yet. Besides, machine learning models such as the XGBoost model has multiple parameters that need to be tuned, and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution. This study investigated the performance of the hybrid extreme… More >

  • Open Access

    ARTICLE

    Gender Forecast Based on the Information about People Who Violated Traffic Principle

    Rui Li1, Guang Sun1,*, Jingyi He1, Ying Jiang1, Rui Sun1, Haixia Li1, Peng Guo1,2, Jianjun Zhang3

    Journal on Internet of Things, Vol.2, No.2, pp. 65-73, 2020, DOI:10.32604/jiot.2020.09868 - 14 September 2020

    Abstract User portrait has been a booming concept in big data industry in recent years which is a direct way to restore users’ information. When it talks about user portrait, it will be connected with precise marketing and operating. However, there are more ways which can reflect the good use of user portrait. Commercial use is the most acceptable use but it also can be used in different industries widely. The goal of this paper is forecasting gender by user portrait and making it useful in transportation safety. It can extract the information from people who More >

Displaying 171-180 on page 18 of 196. Per Page