Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (260)
  • Open Access

    ARTICLE

    KSKV: Key-Strategy for Key-Value Data Collection with Local Differential Privacy

    Dan Zhao1, Yang You2, Chuanwen Luo3,*, Ting Chen4,*, Yang Liu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3063-3083, 2024, DOI:10.32604/cmes.2023.045400

    Abstract In recent years, the research field of data collection under local differential privacy (LDP) has expanded its focus from elementary data types to include more complex structural data, such as set-value and graph data. However, our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection. Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key. Additionally, the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.… More >

  • Open Access

    ARTICLE

    An Optimization Approach of IoD Deployment for Optimal Coverage Based on Radio Frequency Model

    Tarek Sheltami1,*, Gamil Ahmed1, Ansar Yasar2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2627-2647, 2024, DOI:10.32604/cmes.2023.044973

    Abstract Recently, Internet of Drones (IoD) has garnered significant attention due to its widespread applications. However, deploying IoD for area coverage poses numerous limitations and challenges. These include interference between neighboring drones, the need for directional antennas, and altitude restrictions for drones. These challenges necessitate the development of efficient solutions. This research paper presents a cooperative decision-making approach for an efficient IoD deployment to address these challenges effectively. The primary objective of this study is to achieve an efficient IoD deployment strategy that maximizes the coverage region while minimizing interference between neighboring drones. In deployment problem, the interference increases as the… More >

  • Open Access

    ARTICLE

    Shifting the Paradigm: A Fresh Look at Physical Activity Frequency and Its Impact on Mental Health, Life Satisfaction, and Self-Rated Health in Adolescents

    Wenjie Li1, Yucheng Gao2, Guoqing Liu2, Rongkai Hao2, Meijie Zhang2, Xiaotian Li1,*

    International Journal of Mental Health Promotion, Vol.26, No.2, pp. 83-92, 2024, DOI:10.32604/ijmhp.2023.042014

    Abstract As adolescent mental health problems are becoming a more serious issue globally, this paper explores the relationship of physical activity in adolescents and its frequency on mental health as well as examines the mediating effects of life satisfaction and self-rated health in order to provide a reference for the promotion of mental health in adolescents. A sample of 3578 Chinese high school students completed questionnaires assessing their mental health, physical activity frequency, life satisfaction, and self-rated health. The mean SCL-90 value for adolescents was found to be 1.629%, and 24.73% of adolescents had varying degrees of mental health issue. Increased… More >

  • Open Access

    ARTICLE

    Design of a Multifrequency Signal Parameter Estimation Method for the Distribution Network Based on HIpST

    Bin Liu1, Shuai Liang1, Renjie Ding1, Shuguang Li2,*

    Energy Engineering, Vol.121, No.3, pp. 729-746, 2024, DOI:10.32604/ee.2023.044224

    Abstract The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks. Therefore, it is critical to find solutions to the issues of multifrequency parameter estimation and synchronous measurement estimation accuracy in the complex environment of distribution networks. By utilizing the multifrequency sensing capabilities of discrete Fourier transform signals and Taylor series for dynamic signal processing, a multifrequency signal estimation approach based on HT-IpDFT-STWLS (HIpST) for distribution networks is provided. First, by introducing the Hilbert transform (HT), the influence of noise on the estimation algorithm is reduced. Second, signal frequency… More >

  • Open Access

    ARTICLE

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

    Mohammad Javad SheikhMozafari*

    Sound & Vibration, Vol.58, pp. 81-100, 2024, DOI:10.32604/sv.2024.048897

    Abstract Mitigating low-frequency noise poses a significant challenge for acoustic engineers, due to their long wavelength, with conventional porous sound absorbers showing limitations in attenuating such noise. An effective strategy involves combining porous materials with micro-perforated plates (MPP) to address this issue. Given the significant impact of structural variables like panel thickness, hole diameter, and air gap on the acoustic characteristics of MPP, achieving the optimal condition demands numerous sample iterations. The impedance tube’s considerable expense for sound absorption measurement and the substantial cost involved in fabricating each sample using a 3D printer underscore the advantage of utilizing simulation methods to… More > Graphic Abstract

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

  • Open Access

    ARTICLE

    Heterophilic Graph Neural Network Based on Spatial and Frequency Domain Adaptive Embedding Mechanism

    Lanze Zhang, Yijun Gu*, Jingjie Peng

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1701-1731, 2024, DOI:10.32604/cmes.2023.045129

    Abstract Graph Neural Networks (GNNs) play a significant role in tasks related to homophilic graphs. Traditional GNNs, based on the assumption of homophily, employ low-pass filters for neighboring nodes to achieve information aggregation and embedding. However, in heterophilic graphs, nodes from different categories often establish connections, while nodes of the same category are located further apart in the graph topology. This characteristic poses challenges to traditional GNNs, leading to issues of “distant node modeling deficiency” and “failure of the homophily assumption”. In response, this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks (SFA-HGNN), which integrates adaptive embedding mechanisms for… More >

  • Open Access

    ARTICLE

    A Temporary Frequency Response Strategy Using a Voltage Source-Based Permanent Magnet Synchronous Generator and Energy Storage Systems

    Baogang Chen1, Fenglin Miao2,*, Jing Yang1, Chen Qi2, Wenyan Ji1

    Energy Engineering, Vol.121, No.2, pp. 541-555, 2024, DOI:10.32604/ee.2023.028327

    Abstract Energy storage systems (ESS) and permanent magnet synchronous generators (PMSG) are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives. The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted. To improve the inertia response and frequency control capability, we propose a short-term frequency support strategy for the ESS and PMSG. To this end, the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion. The effectiveness of the proposed control strategy was… More >

  • Open Access

    ARTICLE

    Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies

    Zonglin Li1,2, Zhenyu Gao2, Yijun Liu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2159-2175, 2024, DOI:10.32604/cmes.2023.030920

    Abstract The boundary element method (BEM) is a popular method for solving acoustic wave propagation problems, especially those in exterior domains, owing to its ease in handling radiation conditions at infinity. However, BEM models must meet the requirement of 6–10 elements per wavelength, using the conventional constant, linear, or quadratic elements. Therefore, a large storage size of memory and long solution time are often needed in solving higher-frequency problems. In this work, we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM. The first one uses a… More > Graphic Abstract

    Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies

  • Open Access

    ARTICLE

    Fault Identification for Shear-Type Structures Using Low-Frequency Vibration Modes

    Cuihong Li1, Qiuwei Yang2,3,*, Xi Peng2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2769-2791, 2024, DOI:10.32604/cmes.2023.030908

    Abstract Shear-type structures are common structural forms in industrial and civil buildings, such as concrete and steel frame structures. Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures. The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment. However, for many shear-type structures, it is difficult to obtain accurate FEM. In order to avoid finite element modeling, a model-free method for diagnosing shear structure defects is developed in this paper. This method only needs to measure a few low-order vibration modes of the structure.… More >

  • Open Access

    ARTICLE

    EX VIVO LIVER TISSUE RADIOFREQUENCY THERMAL ABLATION: IR MEASUREMENTS AND SIMULATIONS

    Edoardo Gino Macchi* , Giovanni Braschi, Mario Gallati

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.20

    Abstract Radiofrequency thermal ablation (RFTA) is a medical procedure currently widely adopted for liver tumors treatment. Its outcome is strongly influenced by temperature distribution near the RF applicator therefore continuous measurements are required both to validate RFTA numerical models and to better control the outcome of the procedure. The space-time evolution of the thermal field during RFTA on ex vivo porcine liver tissue has been measured by infrared thermal imaging in different experimental setups. A three-dimensional simulation of the whole experiment reproduces all the features of the thermal field measurements and validates the proposed measurement methodology. More >

Displaying 11-20 on page 2 of 260. Per Page