Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (684)
  • Open Access

    ARTICLE

    MMCSD: Multi-Modal Knowledge Graph Completion Based on Super-Resolution and Detailed Description Generation

    Huansha Wang*, Ruiyang Huang*, Qinrang Liu, Shaomei Li, Jianpeng Zhang

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 761-783, 2025, DOI:10.32604/cmc.2025.060395 - 26 March 2025

    Abstract Multi-modal knowledge graph completion (MMKGC) aims to complete missing entities or relations in multi-modal knowledge graphs, thereby discovering more previously unknown triples. Due to the continuous growth of data and knowledge and the limitations of data sources, the visual knowledge within the knowledge graphs is generally of low quality, and some entities suffer from the issue of missing visual modality. Nevertheless, previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing. In this case, mainstream MMKGC models only use… More >

  • Open Access

    ARTICLE

    Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods

    Di Wu*, Liming Feng, Xiaoyu Wang

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 977-999, 2025, DOI:10.32604/cmc.2025.060319 - 26 March 2025

    Abstract Semi-supervised new intent discovery is a significant research focus in natural language understanding. To address the limitations of current semi-supervised training data and the underutilization of implicit information, a Semi-supervised New Intent Discovery for Elastic Neighborhood Syntactic Elimination and Fusion model (SNID-ENSEF) is proposed. Syntactic elimination contrast learning leverages verb-dominant syntactic features, systematically replacing specific words to enhance data diversity. The radius of the positive sample neighborhood is elastically adjusted to eliminate invalid samples and improve training efficiency. A neighborhood sample fusion strategy, based on sample distribution patterns, dynamically adjusts neighborhood size and fuses sample More >

  • Open Access

    ARTICLE

    Bilateral Dual-Residual Real-Time Semantic Segmentation Network

    Shijie Xiang, Dong Zhou, Dan Tian*, Zihao Wang

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 497-515, 2025, DOI:10.32604/cmc.2025.060244 - 26 March 2025

    Abstract Real-time semantic segmentation tasks place stringent demands on network inference speed, often requiring a reduction in network depth to decrease computational load. However, shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy. Therefore, balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation. To address these challenges, this paper proposes a lightweight bilateral dual-residual network. By introducing a novel residual structure combined with feature extraction and fusion modules, the proposed network significantly enhances representational capacity while reducing computational costs. Specifically, an improved compound… More >

  • Open Access

    ARTICLE

    Skeleton-Based Action Recognition Using Graph Convolutional Network with Pose Correction and Channel Topology Refinement

    Yuxin Gao1, Xiaodong Duan2,3, Qiguo Dai2,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 701-718, 2025, DOI:10.32604/cmc.2025.060137 - 26 March 2025

    Abstract Graph convolutional network (GCN) as an essential tool in human action recognition tasks have achieved excellent performance in previous studies. However, most current skeleton-based action recognition using GCN methods use a shared topology, which cannot flexibly adapt to the diverse correlations between joints under different motion features. The video-shooting angle or the occlusion of the body parts may bring about errors when extracting the human pose coordinates with estimation algorithms. In this work, we propose a novel graph convolutional learning framework, called PCCTR-GCN, which integrates pose correction and channel topology refinement for skeleton-based human action… More >

  • Open Access

    ARTICLE

    A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification

    Zhiyong Li, Xinlian Zhou*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 739-760, 2025, DOI:10.32604/cmc.2025.059807 - 26 March 2025

    Abstract Brain tumor classification is crucial for personalized treatment planning. Although deep learning-based Artificial Intelligence (AI) models can automatically analyze tumor images, fine details of small tumor regions may be overlooked during global feature extraction. Therefore, we propose a brain tumor Magnetic Resonance Imaging (MRI) classification model based on a global-local parallel dual-branch structure. The global branch employs ResNet50 with a Multi-Head Self-Attention (MHSA) to capture global contextual information from whole brain images, while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions. The features from both branches are processed through More >

  • Open Access

    ARTICLE

    xCViT: Improved Vision Transformer Network with Fusion of CNN and Xception for Skin Disease Recognition with Explainable AI

    Armughan Ali1,2, Hooria Shahbaz2, Robertas Damaševičius3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1367-1398, 2025, DOI:10.32604/cmc.2025.059301 - 26 March 2025

    Abstract Skin cancer is the most prevalent cancer globally, primarily due to extensive exposure to Ultraviolet (UV) radiation. Early identification of skin cancer enhances the likelihood of effective treatment, as delays may lead to severe tumor advancement. This study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis, with an architecture that integrates a Vision Transformer, a bespoke convolutional neural network (CNN), and an Xception module. They were evaluated using two benchmark datasets, HAM10000 and Skin Cancer ISIC. On the HAM10000, the model achieves a precision of 95.46%, an… More >

  • Open Access

    ARTICLE

    A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4161-4179, 2025, DOI:10.32604/cmc.2025.061497 - 06 March 2025

    Abstract A healthy brain is vital to every person since the brain controls every movement and emotion. Sometimes, some brain cells grow unexpectedly to be uncontrollable and cancerous. These cancerous cells are called brain tumors. For diagnosed patients, their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans. Nowadays, Physicians and radiologists rely on Magnetic Resonance Imaging (MRI) pictures for their clinical evaluations of brain tumors. These evaluations are time-consuming, expensive, and require expertise with high skills to provide an accurate diagnosis. Scholars and industrials have recently partnered to implement… More >

  • Open Access

    ARTICLE

    YOLO-SIFD: YOLO with Sliced Inference and Fractal Dimension Analysis for Improved Fire and Smoke Detection

    Mariam Ishtiaq1,2, Jong-Un Won1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5343-5361, 2025, DOI:10.32604/cmc.2025.061466 - 06 March 2025

    Abstract Fire detection has held stringent importance in computer vision for over half a century. The development of early fire detection strategies is pivotal to the realization of safe and smart cities, inhabitable in the future. However, the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets, lack of diversity, and class imbalance. In this work, we explore the possible ways forward to overcome these challenges posed by available datasets. We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art (SOTA) vision-based models and proposeMore >

  • Open Access

    ARTICLE

    Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering

    Kai Zhou1, Yanan Bai2, Yongli Hu3, Boyue Wang3,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3873-3890, 2025, DOI:10.32604/cmc.2025.060918 - 06 March 2025

    Abstract Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data, while the learned representation is difficult to maintain the underlying structure hidden in the origin samples, especially the high-order neighbor relationship between samples. To overcome the above challenges, this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model. We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module. By this design, the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix; then, More >

  • Open Access

    ARTICLE

    MSCM-Net: Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network

    Xin Wen*, Xiao Zheng, Yu He

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4371-4388, 2025, DOI:10.32604/cmc.2025.060661 - 06 March 2025

    Abstract Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation. However, existing detection methods often struggle with challenges such as complex defect morphology, texture similarity, and fuzzy edges, leading to poor accuracy and missed detections. In order to resolve these problems, we propose MSCM-Net (Multi-Scale Cross-Modal Network), a multiscale cross-modal framework focused on detecting rail surface defects. MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps, effectively capturing and enhancing features at different scales for each modality. To… More >

Displaying 21-30 on page 3 of 684. Per Page