Kexin Wang1,#, Jiancheng Liu1,#,*, Yuqing Lin2,*, Tuo Wang1, Zhipeng Zhang1, Wanlong Qi1, Xingye Han1, Runyuan Wen3
CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1879-1899, 2025, DOI:10.32604/cmc.2024.058952
- 17 February 2025
Abstract Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection. Current frameworks for oriented detection modules are constrained by intrinsic limitations, including excessive computational and memory overheads, discrepancies between predefined anchors and ground truth bounding boxes, intricate training processes, and feature alignment inconsistencies. To overcome these challenges, we present ASL-OOD (Angle-based SIOU Loss for Oriented Object Detection), a novel, efficient, and robust one-stage framework tailored for oriented object detection. The ASL-OOD framework comprises three core components: the Transformer-based Backbone (TB), the Transformer-based Neck… More >