Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    A Hybrid Machine Learning Framework for Security Intrusion Detection

    Fatimah Mudhhi Alanazi*, Bothina Abdelmeneem Elsobky, Shaimaa Aly Elmorsy

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 835-851, 2024, DOI:10.32604/csse.2024.042401

    Abstract Proliferation of technology, coupled with networking growth, has catapulted cybersecurity to the forefront of modern security concerns. In this landscape, the precise detection of cyberattacks and anomalies within networks is crucial, necessitating the development of efficient intrusion detection systems (IDS). This article introduces a framework utilizing the fusion of fuzzy sets with support vector machines (SVM), named FSVM. The core strategy of FSVM lies in calculating the significance of network features to determine their relative importance. Features with minimal significance are prudently disregarded, a method akin to feature selection. This process not only curtails the… More >

  • Open Access

    ARTICLE

    Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context

    Nadeem Salamat1, Muhammad Kamran1,2,*, Shahzaib Ashraf1, Manal Elzain Mohammed Abdulla3, Rashad Ismail3, Mohammed M. Al-Shamiri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1893-1933, 2024, DOI:10.32604/cmes.2023.044697

    Abstract The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy, accessibility, and cost-effectiveness. This paper investigates the potential applications of intuitionistic fuzzy sets (IFS) with rough sets in the context of sparse data. When it comes to capture uncertain information emanating from both upper and lower approximations, these intuitionistic fuzzy rough numbers (IFRNs) are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets, respectively. We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their… More > Graphic Abstract

    Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context

  • Open Access

    ARTICLE

    Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning

    D. Dorathy Prema Kavitha1, L. Francis Raj1, Sandeep Kautish2,#, Abdulaziz S. Almazyad3, Karam M. Sallam4, Ali Wagdy Mohamed5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 801-816, 2024, DOI:10.32604/cmes.2023.030902

    Abstract The intuitive fuzzy set has found important application in decision-making and machine learning. To enrich and utilize the intuitive fuzzy set, this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge. Retinal image detections are categorized as normal eye recognition, suspected glaucomatous eye recognition, and glaucomatous eye recognition. Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images. The proposed model was used to diagnose glaucoma using retinal images… More >

  • Open Access

    ARTICLE

    The Spherical q-Linear Diophantine Fuzzy Multiple-Criteria Group Decision-Making Based on Differential Measure

    Huzaira Razzaque1, Shahzaib Ashraf1,*, Muhammad Naeem2, Yu-Ming Chu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1925-1950, 2024, DOI:10.32604/cmes.2023.030030

    Abstract Spherical q-linear Diophantine fuzzy sets (Sq-LDFSs) proved more effective for handling uncertainty and vagueness in multi-criteria decision-making (MADM). It does not only cover the data in two variable parameters but is also beneficial for three parametric data. By Pythagorean fuzzy sets, the difference is calculated only between two parameters (membership and non-membership). According to human thoughts, fuzzy data can be found in three parameters (membership uncertainty, and non-membership). So, to make a compromise decision, comparing Sq-LDFSs is essential. Existing measures of different fuzzy sets do, however, can have several flaws that can lead to counterintuitive… More >

  • Open Access

    ARTICLE

    A Novel Incremental Attribute Reduction Algorithm Based on Intuitionistic Fuzzy Partition Distance

    Pham Viet Anh1,3, Nguyen Ngoc Thuy4, Nguyen Long Giang2, Pham Dinh Khanh5, Nguyen The Thuy1,6,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2971-2988, 2023, DOI:10.32604/csse.2023.042068

    Abstract Attribute reduction, also known as feature selection, for decision information systems is one of the most pivotal issues in machine learning and data mining. Approaches based on the rough set theory and some extensions were proved to be efficient for dealing with the problem of attribute reduction. Unfortunately, the intuitionistic fuzzy sets based methods have not received much interest, while these methods are well-known as a very powerful approach to noisy decision tables, i.e., data tables with the low initial classification accuracy. Therefore, this paper provides a novel incremental attribute reduction method to deal more… More >

  • Open Access

    ARTICLE

    Business Blockchain Suitability Determinants: Decision-Making through an Intuitionistic Fuzzy Method

    Tomader Almeshal1,*, Jawad Berri1, Tarifa Almulhim2, Areej Alhogail1, Emam Ahmed3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1665-1690, 2023, DOI:10.32604/csse.2023.038871

    Abstract Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency. The widespread adoption of blockchain technology in various industries has shown its potential to solve challenging business problems, as well as the possibility to create new business models which can increase a firm’s competitiveness. Due to the novelty of the technology, whereby many companies are still exploring potential use cases, and considering the complexity of blockchain technology, which may require huge changes to a company’s existing systems and processes, it is important for companies… More >

  • Open Access

    ARTICLE

    On Fractional Differential Inclusion for an Epidemic Model via L-Fuzzy Fixed Point Results

    Maha Noorwali1, Mohammed Shehu Shagari2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1937-1956, 2023, DOI:10.32604/cmes.2023.028239

    Abstract The real world is filled with uncertainty, vagueness, and imprecision. The concepts we meet in everyday life are vague rather than precise. In real-world situations, if a model requires that conclusions drawn from it have some bearings on reality, then two major problems immediately arise, viz. real situations are not usually crisp and deterministic; complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously, process and understand. Conventional mathematical tools which require all inferences to be exact, are not always efficient to handle imprecisions in a wide variety of… More >

  • Open Access

    ARTICLE

    Multi-Attribute Group Decision-Making Method under Spherical Fuzzy Bipolar Soft Expert Framework with Its Application

    Mohammed M. Ali Al-Shamiri1,2, Ghous Ali3,*, Muhammad Zain Ul Abidin3, Arooj Adeel3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1891-1936, 2023, DOI:10.32604/cmes.2023.027844

    Abstract Spherical fuzzy soft expert set (SFSES) theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach. It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts. However, SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters. This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets (SFBSESs) as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets (BSESs). Followed by the development More > Graphic Abstract

    Multi-Attribute Group Decision-Making Method under Spherical Fuzzy Bipolar Soft Expert Framework with Its Application

  • Open Access

    ARTICLE

    New Configurations of the Fuzzy Fractional Differential Boussinesq Model with Application in Ocean Engineering and Their Analysis in Statistical Theory

    Yu-Ming Chu1, Saima Rashid2,*, Shazia Karim3, Anam Sultan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1573-1611, 2023, DOI:10.32604/cmes.2023.027724

    Abstract The fractional-order Boussinesq equations (FBSQe) are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave. The fuzzy forms of analytical FBSQe solutions are first derived using the Adomian decomposition method. It also occurs on the sea floor as opposed to at the functionality. A set of dynamical partial differential equations (PDEs) in this article exemplify an unconfined aquifer flow implication. This methodology can accurately simulate climatological intrinsic waves, so the ripples are spread across a large demographic zone. The Aboodh… More >

  • Open Access

    ARTICLE

    Two-Sided Matching Decision Making with Multi-Attribute Probabilistic Hesitant Fuzzy Sets

    Peichen Zhao1, Qi Yue2,*, Zhibin Deng3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 849-873, 2023, DOI:10.32604/iasc.2023.037090

    Abstract In previous research on two-sided matching (TSM) decision, agents’ preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets. Nowdays, the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality. Probability hesitant fuzzy sets, however, have grown in popularity due to their advantages in communicating complex information. Therefore, this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information. The agent attribute weight vector should… More >

Displaying 1-10 on page 1 of 50. Per Page