Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (913)
  • Open Access

    ARTICLE

    GPR Image Enhancement and Object Detection-Based Identification for Roadbed Subsurface Defect

    Zhuangqiang Wen1, Min Zhang2, Zhekun Shou3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071300 - 08 January 2026

    Abstract Roadbed disease detection is essential for maintaining road functionality. Ground penetrating radar (GPR) enables non-destructive detection without drilling. However, current identification often relies on manual inspection, which requires extensive experience, suffers from low efficiency, and is highly subjective. As the results are presented as radar images, image processing methods can be applied for fast and objective identification. Deep learning-based approaches now offer a robust solution for automated roadbed disease detection. This study proposes an enhanced Faster Region-based Convolutional Neural Networks (R-CNN) framework integrating ResNet-50 as the backbone and two-dimensional discrete Fourier spectrum transformation (2D-DFT) for… More >

  • Open Access

    ARTICLE

    Pan-Cancer Analysis of Enhancer-Induced PAN3-AS1 and Experimental Validation as a WFDC13-Promoting Factor in Colon Cancer

    Xu Guo1, Yanan Yu2, Xiaolin Ma3, Yuanjie Cai1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069274 - 30 December 2025

    Abstract Background: Long non-coding RNAs (lncRNAs) act as epigenetic regulators for tumor hallmarks. This investigation sought to probe the carcinogenic trait of PAN3-AS1 across pan-cancer comprehensively. Methods: We studied the diagnostic and prognostic features and the immune landscape of PAN3-AS1 across pan-cancer by bioinformatics approaches. The hierarchical regulatory networks governing PAN3-AS1 expression in colon cancer were explored via chromatin immunoprecipitation, luciferase activity assays, and RNA immunoprecipitation, etc. We screened drugs sensitive to WAP four-disulfide core domain 13 (WFDC13) by virtual screening and molecular docking. Results: Single-cell transcriptomics demonstrated that a variety of immune populations abnormally expressed PAN3-AS1… More >

  • Open Access

    ARTICLE

    Enhanced Thermal Performance of a Shell and Coil Tube Heat Exchanger Using Fins and Slots

    Najiba Hasan Hamad1,*, Ranj Sirwan Abdullah2, Ahmed Mohammed Adham2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073377 - 27 December 2025

    Abstract Coiled tube heat exchangers are widely preferred in shell structures due to their superior heat transfer performance, driven by favorable flow characteristics. This study investigates the effect of modifying coil and shell configurations on heat transfer efficiency. Two key enhancements were examined: adding fins to the outer coil surface and integrating longitudinal slots within a hollowed shell. These modifications promote turbulence and extend heat transfer duration, thereby improving performance. However, they also introduce challenges, including increased pressure loss and manufacturing complexity. Numerical simulations were conducted using ANSYS Fluent 2024R1 under identical boundary conditions. With a… More > Graphic Abstract

    Enhanced Thermal Performance of a Shell and Coil Tube Heat Exchanger Using Fins and Slots

  • Open Access

    ARTICLE

    Dynamic Boundary Optimization via IDBO-VMD: A Novel Power Allocation Strategy for Hybrid Energy Storage with Enhanced Grid Stability

    Zujun Ding, Qi Xiang, Chengyi Li, Mengyu Ma, Chutong Zhang, Xinfa Gu, Jiaming Shi, Hui Huang, Aoyun Xia, Wenjie Wang, Wan Chen, Ziluo Yu, Jie Ji*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070442 - 27 December 2025

    Abstract In order to address environmental pollution and resource depletion caused by traditional power generation, this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer (IDBO) with Variational Mode Decomposition (VMD). The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations. This study innovatively improves the traditional variational mode decomposition (VMD) algorithm, and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO self-optimization of key parameters K and a. On this basis, Fourier transform technology… More >

  • Open Access

    ARTICLE

    Enhanced Image Captioning via Integrated Wavelet Convolution and MobileNet V3 Architecture

    Mo Hou1,2,3,#,*, Bin Xu4,#, Wen Shang1,2,3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071282 - 09 December 2025

    Abstract Image captioning, a pivotal research area at the intersection of image understanding, artificial intelligence, and linguistics, aims to generate natural language descriptions for images. This paper proposes an efficient image captioning model named Mob-IMWTC, which integrates improved wavelet convolution (IMWTC) with an enhanced MobileNet V3 architecture. The enhanced MobileNet V3 integrates a transformer encoder as its encoding module and a transformer decoder as its decoding module. This innovative neural network significantly reduces the memory space required and model training time, while maintaining a high level of accuracy in generating image descriptions. IMWTC facilitates large receptive… More >

  • Open Access

    ARTICLE

    PMCFusion: A Parallel Multi-Dimensional Complementary Network for Infrared and Visible Image Fusion

    Xu Tao1, Qiang Xiao2, Zhaoqi Jin2, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.070790 - 09 December 2025

    Abstract Image fusion technology aims to generate a more informative single image by integrating complementary information from multi-modal images. Despite the significant progress of deep learning-based fusion methods, existing algorithms are often limited to single or dual-dimensional feature interactions, thus struggling to fully exploit the profound complementarity between multi-modal images. To address this, this paper proposes a parallel multi-dimensional complementary fusion network, termed PMCFusion, for the task of infrared and visible image fusion. The core of this method is its unique parallel three-branch fusion module, PTFM, which pioneers the parallel synergistic perception and efficient integration of… More >

  • Open Access

    ARTICLE

    Adaptive Path-Planning for Autonomous Robots: A UCH-Enhanced Q-Learning Approach

    Wei Liu1,*, Ruiyang Wang1, Guangwei Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070328 - 09 December 2025

    Abstract Q-learning is a classical reinforcement learning method with broad applicability. It can respond effectively to environmental changes and provide flexible strategies, making it suitable for solving robot path-planning problems. However, Q-learning faces challenges in search and update efficiency. To address these issues, we propose an improved Q-learning (IQL) algorithm. We use an enhanced Ant Colony Optimization (ACO) algorithm to optimize Q-table initialization. We also introduce the UCH mechanism to refine the reward function and overcome the exploration dilemma. The IQL algorithm is extensively tested in three grid environments of different scales. The results validate the… More >

  • Open Access

    ARTICLE

    Bi-STAT+: An Enhanced Bidirectional Spatio-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

    Yali Cao1, Weijian Hu1,2, Lingfang Li1,*, Minchao Li1, Meng Xu2, Ke Han2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069373 - 09 December 2025

    Abstract Traffic flow prediction constitutes a fundamental component of Intelligent Transportation Systems (ITS), playing a pivotal role in mitigating congestion, enhancing route optimization, and improving the utilization efficiency of roadway infrastructure. However, existing methods struggle in complex traffic scenarios due to static spatio-temporal embedding, restricted multi-scale temporal modeling, and weak representation of local spatial interactions. This study proposes Bi-STAT+, an enhanced bidirectional spatio-temporal attention framework to address existing limitations through three principal contributions: (1) an adaptive spatio-temporal embedding module that dynamically adjusts embeddings to capture complex traffic variations; (2) frequency-domain analysis in the temporal dimension for… More >

  • Open Access

    ARTICLE

    A Super-Resolution Generative Adversarial Network for Remote Sensing Images Based on Improved Residual Module and Attention Mechanism

    Yifan Zhang1, Yong Gan2,*, Mengke Tang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068880 - 09 December 2025

    Abstract High-resolution remote sensing imagery is essential for critical applications such as precision agriculture, urban management planning, and military reconnaissance. Although significant progress has been made in single-image super-resolution (SISR) using generative adversarial networks (GANs), existing approaches still face challenges in recovering high-frequency details, effectively utilizing features, maintaining structural integrity, and ensuring training stability—particularly when dealing with the complex textures characteristic of remote sensing imagery. To address these limitations, this paper proposes the Improved Residual Module and Attention Mechanism Network (IRMANet), a novel architecture specifically designed for remote sensing image reconstruction. IRMANet builds upon the Super-Resolution… More >

  • Open Access

    ARTICLE

    AT-Net: A Semi-Supervised Framework for Asparagus Pathogenic Spore Detection under Complex Backgrounds

    Jiajun Sun, Shunshun Ji, Chao Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068668 - 09 December 2025

    Abstract Asparagus stem blight is a devastating crop disease, and the early detection of its pathogenic spores is essential for effective disease control and prevention. However, spore detection is still hindered by complex backgrounds, small target sizes, and high annotation costs, which limit its practical application and widespread adoption. To address these issues, a semi-supervised spore detection framework is proposed for use under complex background conditions. Firstly, a difficulty perception scoring function is designed to quantify the detection difficulty of each image region. For regions with higher difficulty scores, a masking strategy is applied, while the… More >

Displaying 1-10 on page 1 of 913. Per Page