Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Optimal Artificial Intelligence Based Automated Skin Lesion Detection and Classification Model

    Kingsley A. Ogudo1, R. Surendran2,*, Osamah Ibrahim Khalaf3

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 693-707, 2023, DOI:10.32604/csse.2023.024154

    Abstract Skin lesions have become a critical illness worldwide, and the earlier identification of skin lesions using dermoscopic images can raise the survival rate. Classification of the skin lesion from those dermoscopic images will be a tedious task. The accuracy of the classification of skin lesions is improved by the use of deep learning models. Recently, convolutional neural networks (CNN) have been established in this domain, and their techniques are extremely established for feature extraction, leading to enhanced classification. With this motivation, this study focuses on the design of artificial intelligence (AI) based solutions, particularly deep… More >

  • Open Access

    ARTICLE

    Intelligent Slime Mould Optimization with Deep Learning Enabled Traffic Prediction in Smart Cities

    Manar Ahmed Hamza1,*, Hadeel Alsolai2, Jaber S. Alzahrani3, Mohammad Alamgeer4,5, Mohamed Mahmoud Sayed6, Abu Sarwar Zamani1, Ishfaq Yaseen1, Abdelwahed Motwakel1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6563-6577, 2022, DOI:10.32604/cmc.2022.031541

    Abstract Intelligent Transportation System (ITS) is one of the revolutionary technologies in smart cities that helps in reducing traffic congestion and enhancing traffic quality. With the help of big data and communication technologies, ITS offers real-time investigation and highly-effective traffic management. Traffic Flow Prediction (TFP) is a vital element in smart city management and is used to forecast the upcoming traffic conditions on transportation network based on past data. Neural Network (NN) and Machine Learning (ML) models are widely utilized in resolving real-time issues since these methods are capable of dealing with adaptive data over a… More >

  • Open Access

    ARTICLE

    Novel Approach to Energy Management via Performance Shaping Factors in Power Plants

    Ahmed Ali Ajmi1,2, Noor Shakir Mahmood1,2, Khairur Rijal Jamaludin1,*, Hayati Habibah Abdul Talib1, Shamsul Sarip1, Hazilah Mad Kaidi1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5025-5039, 2022, DOI:10.32604/cmc.2022.031239

    Abstract The literature that a lack of integration between the performance shaping factors (PSFs) and the energy management performance (EMP) is one of the critical problems that prevent performance improvement and reduces the power plant’s efficiency. To solve this problem, this article aims to achieve two main objectives: (1) Systematically investigate and identify the critical success factors (CSFs) for integration with PSFs and EMP; (2) Develop a novel modelling approach to predict the performance of power plants based on innovative integrated strategies. The research methodology is grounded on the theoretical and practical approach to improving performance.… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Based Multi-Retinal Disease Diagnosis and Classification Framework

    Thavavel Vaiyapuri1, S. Srinivasan2, Mohamed Yacin Sikkandar3, T. S. Balaji4,5, Seifedine Kadry6, Maytham N. Meqdad7, Yunyoung Nam8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5543-5557, 2022, DOI:10.32604/cmc.2022.023919

    Abstract In past decades, retinal diseases have become more common and affect people of all age grounds over the globe. For examining retinal eye disease, an artificial intelligence (AI) based multilabel classification model is needed for automated diagnosis. To analyze the retinal malady, the system proposes a multiclass and multi-label arrangement method. Therefore, the classification frameworks based on features are explicitly described by ophthalmologists under the application of domain knowledge, which tends to be time-consuming, vulnerable generalization ability, and unfeasible in massive datasets. Therefore, the automated diagnosis of multi-retinal diseases becomes essential, which can be solved… More >

  • Open Access

    ARTICLE

    Intelligent Feature Selection with Deep Learning Based Financial Risk Assessment Model

    Thavavel Vaiyapuri1, K. Priyadarshini2, A. Hemlathadhevi3, M. Dhamodaran4, Ashit Kumar Dutta5, Irina V. Pustokhina6,*, Denis A. Pustokhin7

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2429-2444, 2022, DOI:10.32604/cmc.2022.026204

    Abstract Due to global financial crisis, risk management has received significant attention to avoid loss and maximize profit in any business. Since the financial crisis prediction (FCP) process is mainly based on data driven decision making and intelligent models, artificial intelligence (AI) and machine learning (ML) models are widely utilized. This article introduces an intelligent feature selection with deep learning based financial risk assessment model (IFSDL-FRA). The proposed IFSDL-FRA technique aims to determine the financial crisis of a company or enterprise. In addition, the IFSDL-FRA technique involves the design of new water strider optimization algorithm based More >

  • Open Access

    ARTICLE

    Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System

    Ala Saleh Alluhaidan1, Masoud Alajmi2, Fahd N. Al-Wesabi3,4, Anwer Mustafa Hilal5, Manar Ahmed Hamza5,*, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2713-2727, 2022, DOI:10.32604/cmc.2022.025202

    Abstract Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Intelligent Models for Security and Resilience in Cyber Physical Systems

    Qi Liu1,*, Xiaodong Liu2, Radu Grosu3, Ching-Nung Yang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 23-26, 2022, DOI:10.32604/cmes.2022.020646

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Intelligent Model for Predicting the Quality of Services Violation

    Muhammad Adnan Khan1,2, Asma Kanwal3, Sagheer Abbas3, Faheem Khan4, T. Whangbo4,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3607-3619, 2022, DOI:10.32604/cmc.2022.023480

    Abstract Cloud computing is providing IT services to its customer based on Service level agreements (SLAs). It is important for cloud service providers to provide reliable Quality of service (QoS) and to maintain SLAs accountability. Cloud service providers need to predict possible service violations before the emergence of an issue to perform remedial actions for it. Cloud users’ major concerns; the factors for service reliability are based on response time, accessibility, availability, and speed. In this paper, we, therefore, experiment with the parallel mutant-Particle swarm optimization (PSO) for the detection and predictions of QoS violations in More >

  • Open Access

    ARTICLE

    Intelligent Disease Diagnosis Model for Energy Aware Cluster Based IoT Healthcare Systems

    Wafaa Alsaggaf1,*, Felwa Abukhodair1, Amani Tariq Jamal2, Sayed Abdel-Khalek3, Romany F. Mansour4

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1189-1203, 2022, DOI:10.32604/cmc.2022.022469

    Abstract In recent days, advancements in the Internet of Things (IoT) and cloud computing (CC) technologies have emerged in different application areas, particularly healthcare. The use of IoT devices in healthcare sector often generates large amount of data and also spent maximum energy for data transmission to the cloud server. Therefore, energy efficient clustering mechanism is needed to effectively reduce the energy consumption of IoT devices. At the same time, the advent of deep learning (DL) models helps to analyze the healthcare data in the cloud server for decision making. With this motivation, this paper presents… More >

  • Open Access

    ARTICLE

    Deep Learning Based Intelligent Industrial Fault Diagnosis Model

    R. Surendran1,*, Osamah Ibrahim Khalaf2, Carlos Andres Tavera Romero3

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6323-6338, 2022, DOI:10.32604/cmc.2022.021716

    Abstract In the present industrial revolution era, the industrial mechanical system becomes incessantly highly intelligent and composite. So, it is necessary to develop data-driven and monitoring approaches for achieving quick, trustable, and high-quality analysis in an automated way. Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery. The advent of deep learning (DL) methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals. This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network (IIFD-SOIR) Model.… More >

Displaying 11-20 on page 2 of 27. Per Page