Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (529)
  • Open Access

    ARTICLE

    Developing a New Security Framework for Bluetooth Low Energy Devices

    Qiaoyang Zhang1, Zhiyao Liang1,*, Zhiping Cai2

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 457-471, 2019, DOI:10.32604/cmc.2019.03758

    Abstract Wearable devices are becoming more popular in our daily life. They are usually used to monitor health status, track fitness data, or even do medical tests, etc. Since the wearable devices can obtain a lot of personal data, their security issues are very important. Motivated by the consideration that the current pairing mechanisms of Bluetooth Low Energy (BLE) are commonly impractical or insecure for many BLE based wearable devices nowadays, we design and implement a security framework in order to protect the communication between these devices. The security framework is a supplement to the Bluetooth pairing mechanisms and is compatible… More >

  • Open Access

    ARTICLE

    Context-Based Intelligent Scheduling and Knowledge Push Algorithms for AR-Assist Communication Network Maintenance

    Lanlan Rui1, Yabin Qin1,*, Biyao Li1, Zhipeng Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 291-315, 2019, DOI:10.31614/cmes.2018.04240

    Abstract Maintenance is an important aspect in the lifecycle of communication network devices. Prevalent problems in the maintenance of communication networks include inconvenient data carrying and sub-optimal scheduling of work orders, which significantly restrict the efficiency of maintenance work. Moreover, most maintenance systems are still based on cloud architectures that slow down data transfer. With a focus on the completion time, quality, and load balancing of maintenance work, we propose in this paper a learning-based virus evolutionary genetic algorithm with multiple quality-of-service (QoS) constraints to implement intelligent scheduling in an edge network. The algorithm maintains the diversity of the population and… More >

  • Open Access

    ARTICLE

    Smart Security Framework for Educational Institutions Using Internet of Things (IoT)

    Afzal Badshah1, Anwar Ghani1, Muhammad Ahsan Qureshi2, Shahaboddin Shamshirband,3,4,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 81-101, 2019, DOI:10.32604/cmc.2019.06288

    Abstract Educational institutions are soft targets for the terrorist with massive and defenseless people. In the recent past, numbers of such attacks have been executed around the world. Conducting research, in order to provide a secure environment to the educational institutions is a challenging task. This effort is motivated by recent assaults, made at Army Public School Peshawar, following another attack at Charsada University, Khyber Pukhtun Khwa, Pakistan and also the Santa Fe High School Texas, USA massacre. This study uses the basic technologies of edge computing, cloud computing and IoT to design a smart emergency alarm system framework. IoT is… More >

  • Open Access

    ARTICLE

    An Efficient Greedy Traffic Aware Routing Scheme for Internet of Vehicles

    Belghachi Mohammed1,*, Debab Naouel1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 959-972, 2019, DOI:10.32604/cmc.2019.07580

    Abstract A new paradigm of VANET has emerged in recent years: Internet of Vehicles (IoV). These networks are formed on the roads and streets between travellers who have relationships, interactions and common social interests. Users of these networks exchange information of common interest, for example, traffic jams and dangers on the way. They can also exchange files such as multimedia files. IoV is considered as part of the Internet of Things (IoT) where objects are vehicles, which can create a multitude of services dedicated to the intelligent transportation system. The interest is to permit to all connected vehicles to communicate with… More >

  • Open Access

    ARTICLE

    High Precision SAR ADC Using CNTFET for Internet of Things

    V. Gowrishankar1,*, K. Venkatachalam1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 947-957, 2019, DOI:10.32604/cmc.2019.07749

    Abstract A high precision 10-bit successive approximation register analog to digital converter (ADC) designed and implemented in 32nm CNTFET process technology at the supply of 0.6V, with 73.24 dB SNDR at a sampling rate of 640 MS/s with the average power consumption of 120.2 μW for the Internet of things node. The key components in CNTFET SAR ADCs are binary scaled charge redistribution digital to analog converter using MOS capacitors, CNTFET based dynamic latch comparator and simple SAR digital code error correction logic. These techniques are used to increase the sampling rate and precision while ensuring the linearity, power consumption and… More >

  • Open Access

    ARTICLE

    Enabling Comparable Search Over Encrypted Data for IoT with Privacy-Preserving

    Lei Xu1, Chungen Xu1,*, Zhongyi Liu1, Yunling Wang2,3, Jianfeng Wang2,3

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 675-690, 2019, DOI:10.32604/cmc.2019.05276

    Abstract With the rapid development of cloud computing and Internet of Things (IoT) technology, massive data raises and shuttles on the network every day. To ensure the confidentiality and utilization of these data, industries and companies users encrypt their data and store them in an outsourced party. However, simple adoption of encryption scheme makes the original lose its flexibility and utilization. To address these problems, the searchable encryption scheme is proposed. Different from traditional encrypted data search scheme, this paper focuses on providing a solution to search the data from one or more IoT device by comparing their underlying numerical values.… More >

  • Open Access

    ARTICLE

    A Dual-Chaining Watermark Scheme for Data Integrity Protection in Internet of Things

    Baowei Wang1,2,*, Weiwen Kong1, Wei Li1, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 679-695, 2019, DOI:10.32604/cmc.2019.06106

    Abstract Chaining watermark is an effective way to verify the integrity of streaming data in wireless network environment, especially in resource-constrained sensor networks, such as the perception layer of Internet of Things applications. However, in all existing single chaining watermark schemes, how to ensure the synchronization between the data sender and the receiver is still an unsolved problem. Once the synchronization points are attacked by the adversary, existing data integrity authentication schemes are difficult to work properly, and the false negative rate might be up to 50 percent. And the additional fixed group delimiters not only increase the data size, but… More >

  • Open Access

    ARTICLE

    An Asynchronous Clustering and Mobile Data Gathering Schema Based on Timer Mechanism in Wireless Sensor Networks

    Jin Wang1,2,3, Yu Gao3, Wei Liu3, Wenbing Wu1, Se-Jung Lim4,*

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 711-725, 2019, DOI:10.32604/cmc.2019.05450

    Abstract Recently, Wireless sensor networks (WSNs) have become very popular research topics which are applied to many applications. They provide pervasive computing services and techniques in various potential applications for the Internet of Things (IoT). An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism (ACMDGTM) algorithm is proposed which would mitigate the problem of “hot spots” among sensors to enhance the lifetime of networks. The clustering process takes sensors’ location and residual energy into consideration to elect suitable cluster heads. Furthermore, one mobile sink node is employed to access cluster heads in accordance with the data overflow time and… More >

  • Open Access

    ARTICLE

    A Fuzzy Approach for an IoT-based Automated Employee Performance Appraisal

    Jaideep Kaur1, Kamaljit Kaur2

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 23-36, 2017, DOI:10.3970/cmc.2017.053.024

    Abstract The ubiquitous Internet of Things (IoT) through RFIDs, GPS, NFC and other wireless devices is capable of sensing the activities being carried around Industrial environment so as to automate industrial processes. In almost every industry, employee performance appraisal is done manually which may lead to favoritisms. This paper proposes a framework to perform automatic employee performance appraisal based on data sensed from IoT. The framework classifies raw IoT data into three activities (Positive, Negative, Neutral), co-locates employee and activity in order to calculate employee implication and then performs cognitive decision making using fuzzy logic. From the experiments carried out it… More >

Displaying 521-530 on page 53 of 529. Per Page