Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (876)
  • Open Access

    ARTICLE

    A Coupled Finite Difference Material Point Method and Its Application in Explosion Simulation

    X. X. Cui1, X. Zhang1,2, X. Zhou3, Y. Liu1, F. Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.6, pp. 565-599, 2014, DOI:10.3970/cmes.2014.098.565

    Abstract The material point method (MPM) discretizes the material domain by a set of particles, and has showed advantages over the mesh-based methods for many challenging problems associated with large deformation. However, at the same time, it requires more computational resource and has difficulties to construct high order scheme when simulating the fluid in high explosive (HE) explosion problems. A coupled finite difference material point (CFDMP) method is proposed through a bridge region to combine the advantages of the finite difference method (FDM) and MPM. It solves a 3D HE explosion and its interaction with the surrounding structures by dividing the… More >

  • Open Access

    ARTICLE

    Large Deformation Dynamic Three-Dimensional Coupled Finite Element Analysis of Soft Biological Tissues Treated as Biphasic Porous Media

    R.A. Regueiro1,2, B. Zhang2, S.L. Wozniak3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.1, pp. 1-39, 2014, DOI:10.3970/cmes.2014.098.001

    Abstract The paper presents three-dimensional, large deformation, coupled finite element analysis (FEA) of dynamic loading on soft biological tissues treated as biphasic (solid-fluid) porous media. An overview is presented of the biphasic solidfluid mixture theory at finite strain, including inertia terms. The solid skeleton is modeled as an isotropic, compressible, hyperelastic material. FEA simulations include: (1) compressive uniaxial strain loading on a column of lung parenchyma with either pore air or water fluid, (2) out-of-plane pressure loading on a thin slab of lung parenchyma with either pore air or water fluid, and (3) pressure loading on a 1/8th symmetry vertebral disc… More >

  • Open Access

    ARTICLE

    Symmetric Coupling of the Meshless Galerkin Boundary Node and Finite Element Methods for Elasticity

    Xiaolin Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.6, pp. 483-507, 2014, DOI:10.3970/cmes.2014.097.483

    Abstract Combining moving least square (MLS) approximations and boundary integral equations, a symmetric and boundary-only meshless method, the Galerkin boundary node method (GBNM), is developed in this paper for two- and threedimensional elasticity problems with mixed boundary conditions. Unlike other MLS-based meshless methods, boundary conditions in this meshless method can be applied directly and easily. In the GBNM, the stiffness matrices so obtained are symmetric. The property of symmetry is an added advantage in coupling the GBNM with the finite element method (FEM). Thus, a symmetric coupling of the GBNM and the FEM is also discussed for elasticity problems. Error analysis… More >

  • Open Access

    ARTICLE

    Hybrid Elements for Modelling Squeeze Film Effects Coupled with Structural Interactions in Vibratory MEMS Devices

    A. Roychowdhury1,2, A. Nandy1, C.S. Jog1, R. Pratap1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.2, pp. 91-110, 2014, DOI:10.3970/cmes.2014.103.091

    Abstract We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on… More >

  • Open Access

    ARTICLE

    A Projection Method for the Monolithic Interaction System of an Incompressible Fluid and a Structure using a New Algebraic Splitting

    D. Ishihara1, T. Horie1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.6, pp. 421-440, 2014, DOI:10.3970/cmes.2014.101.421

    Abstract In this study, a projection method for the monolithic interaction system of an incompressible fluid and a structure using a new algebraic splitting is proposed. The proposed method splits the monolithic equation system into the equilibrium equations and the pressure Poisson equation (PPE) algebraically using the intermediate velocity in the nonlinear iterations. Since the proposed equilibrium equation satisfies the interface condition, the proposed method is strongly coupled. Moreover, the proposed PPE enforces the incompressibility constraint. Different from previous studies, the proposed algebraic splitting never generates any Schur complement. The proposed method is applied to a channel with a flexible flap,… More >

  • Open Access

    ARTICLE

    Improved MPS-FE Fluid-Structure Interaction Coupled Method with MPS Polygon Wall Boundary Model

    N. Mitsume1, S. Yoshimura1, K. Murotani1, T. Yamada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.4, pp. 229-247, 2014, DOI:10.3970/cmes.2014.101.229

    Abstract The MPS-FE method, which adopts the Finite Element (FE) method for structure computation and the Moving Particle Simulation (MPS) method for fluid computation involving free surfaces, was developed to solve fluid-structure interaction problems with free surfaces. The conventional MPS-FE method, in which MPS wall boundary particles and finite elements are overlapped in order to exchange information at a fluid-structure interface, is not versatile and reduces the advantages of the software modularity. In this study, we developed a nonoverlapping approach in which the interface in the fluid computation corresponds to the interface in the structure computation through an MPS polygon wall… More >

  • Open Access

    ARTICLE

    Coupled ABC and Spline Collocation Approach for a Class of Nonlinear Boundary Value Problems over Semi-Infinite Domains

    S.A. Khuri1, A. Sayfy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.2, pp. 81-96, 2014, DOI:10.3970/cmes.2014.101.081

    Abstract In this article, we introduce a numerical scheme to solve a class of nonlinear two-point BVPs on a semi-infinite domain that arise in engineering applications and the physical sciences. The strategy is based on replacing the boundary condition at infinity by an asymptotic boundary condition (ABC) specified over a finite interval that approaches the given value at infinity. Then, the problem complimented with the resulting ABC is solved using a fourth order spline collocation approach constructed over uniform meshes on the truncated domain. A number of test examples are considered to confirm the accuracy, efficient treatment of the boundary condition… More >

  • Open Access

    ARTICLE

    Numerical Solution of System of N–Coupled Nonlinear Schrödinger Equations via Two Variants of the Meshless Local Petrov–Galerkin (MLPG) Method

    M. Dehghan1, M. Abbaszadeh2, A. Mohebbi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.5, pp. 399-444, 2014, DOI:10.3970/cmes.2014.100.399

    Abstract In this paper three numerical techniques are proposed for solving the system of N-coupled nonlinear Schrödinger (CNLS) equations. Firstly, we obtain a time discrete scheme by approximating the first-order time derivative via the forward finite difference formula, then for obtaining a full discretization scheme, we use the Kansa’s approach to approximate the spatial derivatives via radial basis functions (RBFs) collocation methodology. We introduce the moving least squares (MLS) approximation and radial point interpolation method (RPIM) with their shape functions, separately. It should be noted that the shape functions of RPIM unlike the shape functions of the MLS approximation have kronecker… More >

  • Open Access

    ARTICLE

    Detailed CVFEM Algorithm for Three Dimensional Advection-diffusion Problems

    E. Tombarević1, V. R. Voller2, I. Vušanović1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.1, pp. 1-29, 2013, DOI:10.3970/cmes.2013.096.001

    Abstract The Control Volume Finite Element Method (CVFEM) combines the geometric flexibility of the Finite Element Method (FEM) with the physical intuition of the Control Volume Method (CVM). These two features of the CVFEM make it a very powerful tool for solving heat and fluid flow problems within complex domain geometries. In solving problems in the two-dimensional domains the development of the CVFEM has been well documented. For the three-dimensional problems, while there is extensive reporting on the details of the numerical approximation, there is relatively sparse information on important issues related to data structure and interpolation. Here, in the context… More >

  • Open Access

    ARTICLE

    Creep of Concrete Core and Time-Dependent Non-Linear Behaviour and Buckling of Shallow Concrete-Filled Steel Tubular Arches

    K. Luo1, Y. L. Pi1, W. Gao1, M. A. Bradford1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.1, pp. 31-58, 2013, DOI:10.3970/cmes.2013.095.031

    Abstract This paper presents a theoretical analysis for the time-dependent nonlinear behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches under a sustained central concentrated load. The virtual work method is used to establish the differential equations of equilibrium for the time-dependent behaviour and buckling analyses of shallow CFST arches, and the age-adjusted effective modulus method is adopted to model the creep behaviour of the concrete core. Analytical solutions of time-dependent displacements and internal forces of shallow CFST arches are derived. It has been found that under a sustained central concentrated load, the deformations and bending moments in a shallow… More >

Displaying 751-760 on page 76 of 876. Per Page