Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (876)
  • Open Access

    ARTICLE

    Scaled Boundary Finite Element Method for Thermoelasticity in Voided Materials

    Jan Sladek1, Vladimir Sladek1, Peter Stanak1

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.4, pp. 229-262, 2015, DOI:10.3970/cmes.2015.106.229

    Abstract The scaled boundary finite element method (SBFEM) is presented to study thermoelastic problems in materials with voids. The SBFEM combines the main advantages of the finite element method (FEM) and the boundary element method (BEM). In this method, only the boundary is discretized with elements leading to a reduction of spatial dimension by one. It reduces computational efforts in mesh generation and CPU. In contrast to the BEM, no fundamental solution is required, which permits to analyze general boundary value problems, where the conventional BEM cannot be applied due to missing fundamental solution. The computational homogenization technique is applied for… More >

  • Open Access

    ARTICLE

    High-Order Fully Coupled Scheme Based on Compact Integrated RBF Approximation for Viscous Flows in Regular and Irregular Domains

    C.M.T. Tien1, N. Thai-Quang1, N. Mai-Duy1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.4, pp. 301-340, 2015, DOI:10.3970/cmes.2015.105.301

    Abstract In this study, we present a numerical discretisation scheme, based on a direct fully coupled approach and compact integrated radial basis function (CIRBF) approximations, to simulate viscous flows in regular/irregular domains. The governing equations are taken in the primitive form where the velocity and pressure fields are solved in a direct fully coupled approach. Compact local approximations, based on integrated radial basis functions, over 3-node stencils are introduced into the direct fully coupled approach to represent the field variables. The present scheme is verified through the solutions of several problems including Poisson equations, Taylor-Green vortices and lid driven cavity flows,… More >

  • Open Access

    ARTICLE

    A New Coupled Fractional Reduced Differential Transform Method for the Numerical Solution of Fractional Predator-Prey System

    S. Saha Ray1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.3, pp. 231-249, 2015, DOI:10.3970/cmes.2015.105.231

    Abstract In the present article, a relatively very new technique viz. Coupled Fractional Reduced Differential Transform, has been executed to attain the approximate numerical solution of the predator-prey dynamical system. The fractional derivatives are defined in the Caputo sense. Utilizing the present method we can solve many linear and nonlinear coupled fractional differential equations. The results thus obtained are compared with those of other available methods. Numerical solutions are presented graphically to show the simplicity and authenticity of the method. More >

  • Open Access

    ARTICLE

    A Three-point Coupled Compact Integrated RBF Scheme for Second-order Differential Problems

    C.M.T. Tien1, N. Thai-Quang1, N. Mai-Duy1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.6, pp. 425-469, 2015, DOI:10.3970/cmes.2015.104.425

    Abstract In this paper, we propose a three-point coupled compact integrated radial basis function (CCIRBF) approximation scheme for the discretisation of second-order differential problems in one and two dimensions. The CCIRBF employs integrated radial basis functions (IRBFs) to construct the approximations for its first and second derivatives over a three-point stencil in each direction. Nodal values of the first and second derivatives (i.e. extra information), incorporated into approximations by means of the constants of integration, are simultaneously employed to compute the first and second derivatives. The essence of the CCIRBF scheme is to couple the extra information of the nodal first… More >

  • Open Access

    ARTICLE

    A Continuum Shell Model Including van derWaals Interaction for Free Vibrations of Double-Walled Carbon Nanotubes

    Salvatore Brischetto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.4, pp. 305-327, 2015, DOI:10.3970/cmes.2015.104.305

    Abstract This paper proposes the free vibration analysis of Double-Walled Carbon NanoTubes (DWCNTs). A continuum elastic three-dimensional shell model is used for natural frequency investigation of simply supported DWCNTs. The 3D shell method is compared with beam analyses to show the applicability limits of 1D beam models. The effect of van der Waals interaction between the two cylinders is shown for different Carbon NanoTube (CNT) lengths and vibration modes. Results give the van der Waals interaction effect in terms of frequency values. In order to apply the 3D shell continuum model, DWCNTs are defined as two concentric isotropic cylinders (with an… More >

  • Open Access

    ARTICLE

    A High-order Coupled Compact Integrated RBF Approximation Based Domain Decomposition Algorithm for Second-order Differential Problems

    C.M.T. Tien1, N. Pham-Sy1, N. Mai-Duy1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.4, pp. 251-304, 2015, DOI:10.3970/cmes.2015.104.251

    Abstract This paper presents a high-order coupled compact integrated RBF (CC IRBF) approximation based domain decomposition (DD) algorithm for the discretisation of second-order differential problems. Several Schwarz DD algorithms, including one-level additive/ multiplicative and two-level additive/ multiplicative/ hybrid, are employed. The CCIRBF based DD algorithms are analysed with different mesh sizes, numbers of subdomains and overlap sizes for Poisson problems. Our convergence analysis shows that the CCIRBF two-level multiplicative version is the most effective algorithm among various schemes employed here. Especially, the present CCIRBF two-level method converges quite rapidly even when the domain is divided into many subdomains, which shows great… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Bubble Formation at a Single Orifice in Gas-fluidized Beds with Smoothed Particle Hydrodynamics and Finite Volume Coupled Method

    F.Z. Chen1,2, H.F. Qiang1, W.R. Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 41-68, 2015, DOI:10.3970/cmes.2015.104.041

    Abstract A coupled method describing gas-solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds. Solid particles are traced with smoothed particle hydrodynamics, whereas gas phase is discretized by finite volume method. Drag force, gas pressure gradient, and volume fraction are used to couple the two methods. The effect of injection velocities, particle sizes, and particle densities on bubble growth is analyzed using the coupled method. The simulation results, obtained for two-dimensional geometries, include the shape and diameter size of a bubble as a function of time; such results are compared with… More >

  • Open Access

    ARTICLE

    Long-term Analyses of Concrete-Filled Steel Tubular Arches Accounting for Interval Uncertainty

    Yong-Lin Pi1, Mark Andrew Bradford1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.3, pp. 233-253, 2014, DOI:10.3970/cmes.2014.099.233

    Abstract Creep and shrinkage of the concrete core of a concrete-filled steel tubular (CFST) arch under sustained loading are inevitable, and cause a long-term change of the equilibrium configuration of the CFST arch. As the equilibrium configuration changes continuously, the long-term radial and axial displacements of the CFST arch, stress distributions as well as the internal forces in the steel tube and the concrete core change substantially with time. Creep and shrinkage of the concrete core are related to a number of its material parameters such as its creep coefficient, aging coefficient, and shrinkage strain. The values of these parameters differ… More >

  • Open Access

    ARTICLE

    Speedup of Elastic–Plastic Analysis of Large-scale Model with Crack Using Partitioned Coupling Method with Subcycling Technique

    Yasunori Yusa1, Shinobu Yoshimura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 87-104, 2014, DOI:10.3970/cmes.2014.099.087

    Abstract To speed up the elastic–plastic analysis of a large-scale model with a crack in which plasticity is observed near the crack, the partitioned coupling method is applied. In this method, the entire analysis model is decomposed into two non-overlapped domains (i.e., global and local domains), and the two domains are analyzed with an iterative method. The cracked local domain is modeled as an elastic–plastic body, whereas the large-scale global domain is modeled as an elastic body. A subcycling technique is utilized for incremental analysis to reduce the number of global elastic analyses. For a benchmark problem with 6 million degrees… More >

  • Open Access

    ARTICLE

    Nonlinear Panel Flutter Analysis Based on an Improved CFD/CSD Coupled Procedure

    Xiaomin An1, Min Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.6, pp. 601-629, 2014, DOI:10.3970/cmes.2014.098.601

    Abstract Nonlinear aeroelasticity, caused by the interaction between nonlinear fluid and geometrically nonlinear structure, is studied by an improved CFD and CSD coupled program. An AUSMpw+ flux splitting scheme, combined with an implicit time marching technology and geometric conservation law, is utilized to solve unsteady aerodynamic pressure; The finite element co-rotational theory is applied to model geometrically nonlinear two-dimensional and three-dimensional panels, and a predictor-corrector program with an approximately energy conservation is developed to obtain nonlinear structure response. The two solvers are connected by Farhat’s second order loosely coupled method and the aerodynamic loads and structural displacements are transferred by boundary… More >

Displaying 741-750 on page 75 of 876. Per Page