Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (876)
  • Open Access

    ARTICLE

    Model of Random Spatial Packing of Rigid Spheres with Controlled Macroscopic Homogenity

    J. Zidek1 , J. Kucera1, J. Jancar1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 51-74, 2010, DOI:10.3970/cmc.2010.016.051

    Abstract It has been shown that in particulate filled composites, a cross-property relationship exists between various transport properties (e.g., electrical conductivity, mechanical reinforcement, gas permeation) of a macroscale composite. Thus, knowledge of the effective mechanical properties of a composite immediately places bounds on its electrical conductivity or gas permeation behavior. Using these bounds allows us to predict the phase dispersion state that optimizes one or multiple properties of the composite and, thus, the knowledge of how spatial arrangement of filler particles at their given content affects physical properties of the composite can be valuable. In this paper, a new numerical model… More >

  • Open Access

    ARTICLE

    Modelling of Evaporative Cooling of Porous Medium Filled with Evaporative Liquid

    D.P.Mondal1, S.Das1, Anshul Badkul1, Nidhi Jha1

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 115-134, 2009, DOI:10.3970/cmc.2009.013.115

    Abstract The cooling effect by evaporative liquid is modeled by considering that heat is transferred from the system to the surrounding due to evaporation of liquid through the pores present in the medium. The variation of cooling rate with cell size, volume fraction of pores and physical conditions has been analyzed. The model demonstrates that it increases with increase in thickness of the foam slab and with increase in velocity of air. It is also observed that cooling effect decreases with decrease in volume fraction of porosity and with increase in relative density, cell size, thermal conductivity and relative humidity. More >

  • Open Access

    ARTICLE

    Three-Dimensional Solutions of Functionally Graded Piezo-Thermo-Elastic Shells and Plates Using a Modified Pagano Method

    Chih-Ping Wu1,2, Shao-En Huang2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 251-282, 2009, DOI:10.3970/cmc.2009.012.251

    Abstract A modified Pagano method is developed for the three-dimensional (3D) coupled analysis of simply-supported, doubly curved functionally graded (FG) piezo-thermo-elastic shells under thermal loads. Four different loading conditions, applied on the lateral surfaces of the shells, are considered. The material properties of FG shells are regarded as heterogeneous through the thickness coordinate, and then specified to obey an exponent-law dependent on this. The Pagano method, conventionally used for the analysis of multilayered composite elastic plates/shells, is modified to be feasible for the present analysis of FG piezo-thermo-elastic plates/shells. The modifications include that a displacement-based formulation is replaced by a mixed… More >

  • Open Access

    ARTICLE

    A Phenomenological Theory and Numerical Procedure for Chemo-Mechanical Coupling Behavior of Hydrogel

    Q. S. Yang1, B. S. Liu, L. T. Meng

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 39-56, 2009, DOI:10.3970/cmc.2009.012.039

    Abstract Coupling and interaction of multi-physical fields exist in hydrogel consisting of a fluid and a solid under external stimulus. In this paper, a phenomenological theory for chemo-mechanical coupling behavior and finite element formulation are developed, based on the thermodynamic laws. The free energy function is constructed and used to derive the constitutive equations and governing equations for a linear coupling system including a chemical effect. Equivalent integral forms of the governing equations and coupled finite element equations are obtained by a variational principle. Numerical examples demonstrate the interaction of chemical and mechanical effects of hydrogel under external force loadings and… More >

  • Open Access

    ARTICLE

    An Investigation into the Mechanical Behavior of Single-Walled Carbon Nanotubes under Uniaxial Tension Using Molecular Statics and Molecular Dynamics Simulations

    Yeau-Ren Jeng1,Ping-Chi Tsai1,Guo-Zhe Huang1, I-Ling Chang1

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 109-126, 2009, DOI:10.3970/cmc.2009.011.109

    Abstract This study performs a series of Molecular Dynamics (MD) and Molecular Statics (MS) simulations to investigate the mechanical properties of single-walled carbon nanotubes (SWCNTs) under a uniaxial tensile strain. The simulations focus specifically on the effects of the nanotube helicity, the nanotube diameter and the percentage of vacancy defects on the bond length, bond angle and tensile strength of zigzag and armchair SWCNTs. In this study, a good agreement is observed between the MD and MS simulation results for the stress-strain response of the SWCNTs in both the elastic and the plastic deformation regimes. The MS simulations reveal that in… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Meshless Scheme with Background Grid for Electrostatic-Structural Analysis

    Ming-Hsiao Lee, Wen-Hwa Chen

    CMC-Computers, Materials & Continua, Vol.11, No.1, pp. 59-78, 2009, DOI:10.3970/cmc.2009.011.059

    Abstract On the analysis of electrostatic-structural coupled problems as encountered in many electrostatic driven MEMS devices, the electrostatic analysis domain is often extremely distorted due to the deflection of the structure. This kind of problem is difficult to be dealt with by almost all kinds of available numerical methods. A new three-dimensional meshless scheme with background grid is thus proposed herein. By this scheme, a three-dimensional fixed background grid with regularly-distributed nodes is utilized. Another set of discretized boundary grid is employed to describe the boundary surfaces of both the structure and the electrostatic field. The analysis electrostatic/structural domains are modeled… More >

Displaying 871-880 on page 88 of 876. Per Page