Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (876)
  • Open Access

    ARTICLE

    A Blockchain-Based Authentication Protocol for WLAN Mesh Security Access

    Xin Jiang1, Mingzhe Liu1,*, Chen Yang1, Yanhua Liu1, Ruili Wang2

    CMC-Computers, Materials & Continua, Vol.58, No.1, pp. 45-59, 2019, DOI:10.32604/cmc.2019.03863

    Abstract In order to deploy a secure WLAN mesh network, authentication of both users and APs is needed, and a secure authentication mechanism should be employed. However, some additional configurations of trusted third party agencies are still needed on-site to deploy a secure authentication system. This paper proposes a new block chain-based authentication protocol for WLAN mesh security access, to reduce the deployment costs and resolve the issues of requiring key delivery and central server during IEEE 802.11X authentication. This method takes the user’s authentication request as a transaction, considers all the authentication records in the mesh network as the public… More >

  • Open Access

    ARTICLE

    Analysis and Improvement of an Efficient Controlled Quantum Secure Direct Communication and Authentication Protocol

    Jifeng Zhong1,*, Zhihao Liu2,3,*, Juan Xu4

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 621-633, 2018, DOI:10.32604/cmc.2018.03706

    Abstract The controlled quantum secure direct communication (CQSDC) with authentication protocol based on four particle cluster states via quantum one-time pad and local unitary operations is cryptanalyzed. It is found that there are some serious security issues in this protocol. An eavesdropper (Eve) can eavesdrop on some information of the identity strings of the receiver and the controller without being detected by the selective-CNOT-operation (SCNO) attack. By the same attack, Eve can also steal some information of the secret message that the sender transmits. In addition, the receiver can take the same kind of attack to eavesdrop on some information of… More >

  • Open Access

    ARTICLE

    Perfect Quantum Teleportation via Bell States

    Xiaoqing Tan1,*, Xiaochun Li1, Pei Yang1

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 495-503, 2018, DOI:10.32604/cmc.2018.03772

    Abstract Quantum mechanics shows superiority than classical mechanics in many aspects and quantum entanglement plays an essential role in information processing and some computational tasks such as quantum teleportation (QT). QT was proposed to transmit the unknown states, in which EPR pairs, the entangled states, can be used as quantum channels. In this paper, we present two simple schemes for teleporting a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state respectively. Alice and Bob have shared an entangle state. Two Bell states are used as quantum channels. Then after Alice measuring her qubits and informing Bob… More >

  • Open Access

    ARTICLE

    Controlled Cyclic Remote State Preparation of Arbitrary Qubit States

    Mingming Wang1,2,*, Chen Yang1, Reza Mousoli3

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 321-329, 2018, DOI:10.3970/cmc.2018.02064

    Abstract Quantum secure communications could securely transmit quantum information by using quantum resource. Recently, novel applications such as bidirectional and asymmetric quantum protocols have been developed. In this paper, we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation (RSP). As one of its applications, we propose a new type of quantum secure communications, i.e. cyclic RSP protocols. Starting from a four-party controlled cyclic RSP protocol of one-qubit states, we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of… More >

  • Open Access

    ARTICLE

    Time Optimization of Multiple Knowledge Transfers in the Big Data Environment

    Chuanrong Wu1, *, Evgeniya Zapevalova1, Yingwu Chen2, Feng Li3

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 269-285, 2018, DOI:10.3970/cmc.2018.054.269

    Abstract In the big data environment, enterprises must constantly assimilate big data knowledge and private knowledge by multiple knowledge transfers to maintain their competitive advantage. The optimal time of knowledge transfer is one of the most important aspects to improve knowledge transfer efficiency. Based on the analysis of the complex characteristics of knowledge transfer in the big data environment, multiple knowledge transfers can be divided into two categories. One is the simultaneous transfer of various types of knowledge, and the other one is multiple knowledge transfers at different time points. Taking into consideration the influential factors, such as the knowledge type,… More >

  • Open Access

    ARTICLE

    A Nonlinear Magneto-Mechanical Coupled Constitutive Model for the Magnetostrictive Material Galfenol

    Ying Xiao1,2, Haomiao Zhou1, Xiaofan Gou2,*

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 209-228, 2018, DOI:10.3970/cmc.2018.054.209

    Abstract In order to predict the performance of magnetostrictive smart material and push its applications in engineering, it is necessary to build the constitutive relations for the magnetostrictive material Galfenol. For Galfenol rods under the action of the pre-stress and magnetic field along the axial direction, the one-dimensional nonlinear magneto-mechanical coupling constitutive model is proposed based on the elastic Gibbs free energy, where the Taylor expansion of the elastic Gibbs free energy is made to obtain the polynomial forms. And then the constitutive relations are derived by replacing the polynomial forms with the proper transcendental functions based on the microscopic magneto-mechanical… More >

  • Open Access

    ARTICLE

    Seepage-Stress-Damage Coupled Model of Coal Under Geo-Stress Influence

    Yi Xue1,2,3, Faning Dang2, Rongjian Li2, Liuming Fan2, Qin Hao4, Lin Mu2, Yuanyuan Xia2

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 43-59, 2018, DOI:10.3970/cmc.2018.054.043

    Abstract In the seepage-stress-damage coupled process, the mechanical properties and seepage characteristics of coal are distinctly different between pre-peak stage and post-peak stage. This difference is mainly caused by damage of coal. Therefore, in the process of seepage and stress analysis of coal under the influence of excavation or mining, we need to consider the weakening of mechanical properties and the development of fractures of damaged coal. Based on this understanding, this paper analyzes the influence of damage on mechanics and seepage behavior of coal. A coupled model is established to analyze the seepage-stress-damage coupled process of coal. This model implemented… More >

  • Open Access

    ARTICLE

    Three Phase Composite Cylinder Assemblage Model for Analyzing the Elastic Behavior of MWCNT-Reinforced Polymers

    Puneet Kumar1,*, J. Srinivas2

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 1-20, 2018, DOI:10.3970/cmc.2018.054.001

    Abstract Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube (CNT) reinforced polymer composites recently. This paper presents the composite cylinder assemblage (CCA) approach based on continuum mechanics for investigating the elastic properties of a polymer resin reinforced by multi-walled carbon nanotubes (MWCNTs). A three-phase cylindrical representative volume element (RVE) model is employed based on CCA technique to elucidate the effects of inter layers, chirality, interspacing, volume fraction of MWCNT, interphase properties and temperature conditions on the elastic modulus of the composite. The interface region between CNT and polymer matrix is modeled… More >

  • Open Access

    ARTICLE

    Cycle Time Reduction in Injection Molding by Using Milled Groove Conformal Cooling

    Mahesh S. Shinde1,*, Kishor M. Ashtankar2

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 207-217, 2017, DOI:10.32604/cmc.2017.053.223

    Abstract This paper presents simulation study on Milled Grooved conformal cooling channels (MGCCC) in injection molding. MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling. A case study of Encloser part is investigated for cycle time reduction and quality improvement. The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight (AMI) 2016. The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling. More >

  • Open Access

    ARTICLE

    A Macro Element Method to Improve Computational Efficiency in Large-scaled Nonlinear Analysis

    Huan Wang1, Weifeng Yuan2,3, Fei Jia2

    CMC-Computers, Materials & Continua, Vol.47, No.1, pp. 31-43, 2015, DOI:10.3970/cmc.2015.047.031

    Abstract Compared with dealing with a linear system, solving a nonlinear system equation in numerical simulation requires generally more CPU time since iterative approach is usually used in the latter. To cut down the computing cost, a direct way is to reduce the degree of freedoms (DOF) of the problem under investigation. However, this kind of treatment may result in poorer accuracy. In this manuscript, a macro element method is proposed to improve computational efficiency in large-scaled nonlinear analysis. When this concept is incorporated into finite element analysis (FEA), all the members in the linear zones of a structure can be… More >

Displaying 851-860 on page 86 of 876. Per Page