Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (876)
  • Open Access

    ARTICLE

    Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method

    Ahmed Mahmoudi1,2, Imen Mejri1, Mohamed Ammar Abbassi1, Ahmed Omri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 353-388, 2013, DOI:10.3970/fdmp.2013.009.353

    Abstract A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 LBM and a D2Q4 LBM,… More >

  • Open Access

    ARTICLE

    Modeling a Discontinuous CVD Coating Process: II. Detailed Simulation Results

    Joseph G. Lawrence, John P. Dismukes, Arunan Nadarajah1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 255-264, 2007, DOI:10.3970/fdmp.2007.003.255

    Abstract The atmospheric chemical vapor deposition process on continuous glass sheets is a well developed one and the parameters that affect it are relatively well understood. When this process is converted to coat discrete glass plates it introduces a new variable, the gap between the glass plates, which can significantly impact the quality of the coatings. In this study a 2D pseudo steady state model of the process was developed to study the effect of the gap, and the ratio of outlet to inlet gas flow rates (called the bias), on the coating quality. The model was solved with the commercially… More >

  • Open Access

    ARTICLE

    Characteristic of Waves in A Multi-Walled Carbon Nanotube

    G. Q. Xie1,2,3, X. Han2, S. Y. Long3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 1-12, 2007, DOI:10.3970/cmc.2007.006.001

    Abstract A multi-walled carbon nanotube is modeled as a multiple-elastic cylindrical structure. The numerical-analytical method is adopted to analyze the characteristics of harmonic waves propagating along an anisotropic carbon nanotube. Each wall of the carbon nanotube is divided into three-nodal-line layer elements. The deflections of two adjacent tubes are coupled through the van der Waals. The governing equation of element is obtained from Hamilton's principle. A set of system equation of dynamics equilibrium for the entire structure is obtained by the assembling of all the elements. From solution of the eigenvalue equations, the dispersive characteristics, group velocities of multi-walled carbon nanotubes… More >

  • Open Access

    ARTICLE

    Flutter of Thermally Buckled Composite Sandwich Plates

    Le-Chung Shiau1, Shih-Yao Kuo2

    CMC-Computers, Materials & Continua, Vol.5, No.3, pp. 213-222, 2007, DOI:10.3970/cmc.2007.005.213

    Abstract A high precision high order triangular plate element is developed for the linear flutter analysis of thermally buckled composite sandwich plates. Due to uneven thermal expansion in the two local material directions, the buckling mode of the plate may be shifted from one pattern to another for certain fiber orientation or plate aspect ratio as the aerodynamic pressure is present. This buckle pattern change alters the frequencies and modes of the plate and that in turn changes the flutter coalescent modes. Numerical results show that temperature has a destabilizing effect on the flutter boundary but the aerodynamic pressure has a… More >

  • Open Access

    ARTICLE

    Micro-macro Approaches Coupled to An Iterative Process for Nonlinear Porous Media

    S. Smaoui1, A. Ben Hamida1, I. Djeran-Maigre2, H. Dumontet1

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 153-162, 2006, DOI:10.3970/cmc.2006.004.153

    Abstract An iterative homogenization approach is proposed in order to predict the nonlinear hydro-mechanical behaviour of porous media. This process is coupled to classical and modified secant extended methods and linear homogenization predictive schemes. At convergence of the iterative process, same equivalent behaviour is obtained for any secant method, any simplified homogenization used for the linear comparison material and for any initial porosity of the media. An application to the study of the nonlinear behaviour of clayey sediments is presented. The model parameters quantification is based on oedometric experimental results for different clays. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method for Plane Piezoelectricity

    J. Sladek1, V. Sladek1, Ch. Zhang2, F. Garcia-Sanche3, M. Wünsche2

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 109-118, 2006, DOI:10.3970/cmc.2006.004.109

    Abstract Piezoelectric materials have wide range engineering applications in smart structures and devices. They have usually anisotropic properties. Except this complication electric and mechanical fields are coupled each other and the governing equations are much more complex than that in the classical elasticity. Thus, efficient computational methods to solve the boundary or the initial-boundary value problems for piezoelectric solids are required. In this paper, the Meshless local Petrov-Galerkin (MLPG) method with a Heaviside step function as the test functions is applied to solve two-dimensional (2-D) piezoelectric problems. The mechanical fields are described by the equations of motion with an inertial term.… More >

  • Open Access

    ARTICLE

    Uncertain Knowledge Reasoning Based on the Fuzzy Multi Entity Bayesian Networks

    Dun Li1, Hong Wu1, Jinzhu Gao2, Zhuoyun Liu1, Lun Li1, Zhiyun Zheng1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 301-321, 2019, DOI:10.32604/cmc.2019.05953

    Abstract With the rapid development of the semantic web and the ever-growing size of uncertain data, representing and reasoning uncertain information has become a great challenge for the semantic web application developers. In this paper, we present a novel reasoning framework based on the representation of fuzzy PR-OWL. Firstly, the paper gives an overview of the previous research work on uncertainty knowledge representation and reasoning, incorporates Ontology into the fuzzy Multi Entity Bayesian Networks theory, and introduces fuzzy PR-OWL, an Ontology language based on OWL2. Fuzzy PR-OWL describes fuzzy semantics and uncertain relations and gives grammatical definition and semantic interpretation. Secondly,… More >

  • Open Access

    ARTICLE

    Graph-Based Chinese Word Sense Disambiguation with Multi-Knowledge Integration

    Wenpeng Lu1,*, Fanqing Meng2, Shoujin Wang3, Guoqiang Zhang4, Xu Zhang1, Antai Ouyang5, Xiaodong Zhang6

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 197-212, 2019, DOI:10.32604/cmc.2019.06068

    Abstract Word sense disambiguation (WSD) is a fundamental but significant task in natural language processing, which directly affects the performance of upper applications. However, WSD is very challenging due to the problem of knowledge bottleneck, i.e., it is hard to acquire abundant disambiguation knowledge, especially in Chinese. To solve this problem, this paper proposes a graph-based Chinese WSD method with multi-knowledge integration. Particularly, a graph model combining various Chinese and English knowledge resources by word sense mapping is designed. Firstly, the content words in a Chinese ambiguous sentence are extracted and mapped to English words with BabelNet. Then, English word similarity… More >

  • Open Access

    ARTICLE

    An Improved Method for Web Text Affective Cognition Computing Based on Knowledge Graph

    Bohan Niu1,*, Yongfeng Huang2

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 1-14, 2019, DOI:10.32604/cmc.2019.06032

    Abstract The goal of research on the topics such as sentiment analysis and cognition is to analyze the opinions, emotions, evaluations and attitudes that people hold about the entities and their attributes from the text. The word level affective cognition becomes an important topic in sentiment analysis. Extracting the (attribute, opinion word) binary relationship by word segmentation and dependency parsing, and labeling those by existing emotional dictionary combined with webpage information and manual annotation, this paper constitutes a binary relationship knowledge base. By using knowledge embedding method, embedding each element in (attribute, opinion, opinion word) as a word vector into the… More >

  • Open Access

    ARTICLE

    Controlled Secure Direct Communication Protocol via the Three-Qubit Partially Entangled Set of States

    Gang Xu1,2,*, Ke Xiao1,*, Zongpeng Li3, Xin-Xin Niu2,4, Michael Ryan5

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 809-827, 2019, DOI:10.32604/cmc.2019.04400

    Abstract In this paper, we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme, which was found insecure under two kinds of attacks, fake entangled particles attack and disentanglement attack. Then, by changing the party of the preparation of cluster states and using unitary operations, we present an improved protocol which can avoid these two kinds of attacks. Moreover, the protocol is proposed using the three-qubit partially entangled set of states. It is more efficient by only using three particles rather than four or even more to transmit one bit secret information. Given our… More >

Displaying 841-850 on page 85 of 876. Per Page