Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (280)
  • Open Access

    ARTICLE

    Digital Twin-Driven Modeling and Application of High-Temperature Biaxial Materials Testing Apparatus

    Xiyu Gao, Peng Liu, Anran Zhao, Guotai Huang, Jianhai Zhang, Liming Zhou*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4137-4159, 2025, DOI:10.32604/cmc.2025.060194 - 06 March 2025

    Abstract The High-Temperature Biaxial Testing Apparatus (HTBTA) is a critical tool for studying the damage and failure mechanisms of heat-resistant composite materials under extreme conditions. However, existing methods for managing and monitoring such apparatus face challenges, including limited real-time modeling capabilities, inadequate integration of multi-source data, and inefficiencies in human-machine interaction. To address these gaps, this study proposes a novel digital twin-driven framework for HTBTA, encompassing the design, validation, operation, and maintenance phases. By integrating advanced modeling techniques, such as finite element analysis and Long Short-Term Memory (LSTM) networks, the digital twin enables high-fidelity simulation, real-time… More >

  • Open Access

    ARTICLE

    A Barrier-Based Machine Learning Approach for Intrusion Detection in Wireless Sensor Networks

    Haydar Abdulameer Marhoon1,2,*, Rafid Sagban3,4, Atheer Y. Oudah1,5, Saadaldeen Rashid Ahmed6,7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4181-4218, 2025, DOI:10.32604/cmc.2025.058822 - 06 March 2025

    Abstract In order to address the critical security challenges inherent to Wireless Sensor Networks (WSNs), this paper presents a groundbreaking barrier-based machine learning technique. Vital applications like military operations, healthcare monitoring, and environmental surveillance increasingly deploy WSNs, recognizing the critical importance of effective intrusion detection in protecting sensitive data and maintaining operational integrity. The proposed method innovatively partitions the network into logical segments or virtual barriers, allowing for targeted monitoring and data collection that aligns with specific traffic patterns. This approach not only improves the diversit. There are more types of data in the training set,… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Decision Support System for Predicting Pregnancy Risk Levels through Cardiotocograph (CTG) Imaging Analysis

    Ali Hasan Dakheel1,*, Mohammed Raheem Mohammed1, Zainab Ali Abd Alhuseen1, Wassan Adnan Hashim2,3

    Intelligent Automation & Soft Computing, Vol.40, pp. 195-220, 2025, DOI:10.32604/iasc.2025.061622 - 28 February 2025

    Abstract The prediction of pregnancy-related hazards must be accurate and timely to safeguard mother and fetal health. This study aims to enhance risk prediction in pregnancy with a novel deep learning model based on a Long Short-Term Memory (LSTM) generator, designed to capture temporal relationships in cardiotocography (CTG) data. This methodology integrates CTG signals with demographic characteristics and utilizes preprocessing techniques such as noise reduction, normalization, and segmentation to create high-quality input for the model. It uses convolutional layers to extract spatial information, followed by LSTM layers to model sequences for superior predictive performance. The overall More >

  • Open Access

    ARTICLE

    Cloud-Based Deep Learning for Real-Time URL Anomaly Detection: LSTM/GRU and CNN/LSTM Models

    Ayman Noor*

    Computer Systems Science and Engineering, Vol.49, pp. 259-286, 2025, DOI:10.32604/csse.2025.060387 - 21 February 2025

    Abstract Precisely forecasting the performance of Deep Learning (DL) models, particularly in critical areas such as Uniform Resource Locator (URL)-based threat detection, aids in improving systems developed for difficult tasks. In cybersecurity, recognizing harmful URLs is vital to lowering risks associated with phishing, malware, and other online-based attacks. Since it directly affects the model’s capacity to differentiate between benign and harmful URLs, finding the optimum mix of hyperparameters in DL models is a significant difficulty. Two commonly used architectures for sequential and spatial data processing, Long Short-Term Memory (LSTM)/Gated Recurrent Unit (GRU) and Convolutional Neural Network… More >

  • Open Access

    ARTICLE

    MACLSTM: A Weather Attributes Enabled Recurrent Approach to Appliance-Level Energy Consumption Forecasting

    Ruoxin Li1,*, Shaoxiong Wu1, Fengping Deng1, Zhongli Tian1, Hua Cai1, Xiang Li1, Xu Xu1, Qi Liu2,3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2969-2984, 2025, DOI:10.32604/cmc.2025.060230 - 17 February 2025

    Abstract Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management plan of the available resources at the power grids and consumer levels. A non-intrusive inference process can be adopted to predict the amount of energy required by appliances. In this study, an inference process of appliance consumption based on temporal and environmental factors used as a soft sensor is proposed. First, a study of the correlation between the electrical and… More >

  • Open Access

    ARTICLE

    Enhancing User Experience in AI-Powered Human-Computer Communication with Vocal Emotions Identification Using a Novel Deep Learning Method

    Ahmed Alhussen1, Arshiya Sajid Ansari2,*, Mohammad Sajid Mohammadi3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2909-2929, 2025, DOI:10.32604/cmc.2024.059382 - 17 February 2025

    Abstract Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the… More >

  • Open Access

    ARTICLE

    A Software Defect Prediction Method Using a Multivariate Heterogeneous Hybrid Deep Learning Algorithm

    Qi Fei1,2,*, Haojun Hu3, Guisheng Yin1, Zhian Sun2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3251-3279, 2025, DOI:10.32604/cmc.2024.058931 - 17 February 2025

    Abstract Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy… More >

  • Open Access

    ARTICLE

    Short-Term Photovoltaic Power Prediction Based on Multi-Stage Temporal Feature Learning

    Qiang Wang1, Hao Cheng2, Wenrui Zhang2,*, Guangxi Li3, Fan Xu2, Dianhao Chen4, Haixiang Zang4

    Energy Engineering, Vol.122, No.2, pp. 747-764, 2025, DOI:10.32604/ee.2025.059533 - 31 January 2025

    Abstract Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources. However, the fluctuations and intermittency of photovoltaic (PV) power pose challenges for its extensive incorporation into power grids. Thus, enhancing the precision of PV power prediction is particularly important. Although existing studies have made progress in short-term prediction, issues persist, particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data. These factors hinder improvements in PV power prediction performance. To overcome these challenges, this paper… More >

  • Open Access

    ARTICLE

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

    Yuheng Yin, Jiahao Song*, Minghui Yang

    Energy Engineering, Vol.122, No.2, pp. 709-731, 2025, DOI:10.32604/ee.2024.059021 - 31 January 2025

    Abstract The lithium battery is an essential component of electric cars; prompt and accurate problem detection is vital in guaranteeing electric cars’ safe and dependable functioning and addressing the limitations of Back Propagation (BP) neural networks in terms of vanishing gradients and inability to effectively capture dependencies in time series, and the limitations of Long-Short Term Memory (LSTM) neural network models in terms of risk of overfitting. A method based on LSTM-BP is put forward for power battery fault diagnosis to improve the accuracy of lithium battery fault diagnosis. First, a lithium battery model is constructed… More > Graphic Abstract

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

  • Open Access

    ARTICLE

    Hybrid Deep Learning Approach for Automating App Review Classification: Advancing Usability Metrics Classification with an Aspect-Based Sentiment Analysis Framework

    Nahed Alsaleh1,2, Reem Alnanih1,*, Nahed Alowidi1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 949-976, 2025, DOI:10.32604/cmc.2024.059351 - 03 January 2025

    Abstract App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products. Automating the analysis of these reviews is vital for efficient review management. While traditional machine learning (ML) models rely on basic word-based feature extraction, deep learning (DL) methods, enhanced with advanced word embeddings, have shown superior performance. This research introduces a novel aspect-based sentiment analysis (ABSA) framework to classify app reviews based on key non-functional requirements, focusing on usability factors: effectiveness, efficiency, and satisfaction. We propose a hybrid DL model, combining BERT (Bidirectional Encoder Representations from Transformers) More >

Displaying 21-30 on page 3 of 280. Per Page