Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (464)
  • Open Access

    ARTICLE

    A Geometric Embedding Algorithm for Efficiently Generating Semiflexible Chains in the Molten State

    M. Kröger1, M. Müller2, J. Nievergelt2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 559-570, 2003, DOI:10.3970/cmes.2003.004.559

    Abstract We present a novel method for generating starting polymer structures for molecular simulations in the dense phase. The work describes the ingredients of an algorithm for the creation of large, dense or diluted amorphous polymeric systems close to equilibrium and provides measures for its quality. The model systems are made of semiflexible (wormlike) repulsive multibead chains. The key feature of the method is its efficiency, in particular for large systems, while approaching given local and global chain characteristics. Its output has been proven to serve as an excellent basis for subsequent off-lattice molecular dynamics computer simulation. By combining chain growing… More >

  • Open Access

    ARTICLE

    The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple & Less-costly Alternative to the Finite Element and Boundary Element Methods

    Satya N. Atluri1, Shengping Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 11-52, 2002, DOI:10.3970/cmes.2002.003.011

    Abstract A comparison study of the efficiency and accuracy of a variety of meshless trial and test functions is presented in this paper, based on the general concept of the meshless local Petrov-Galerkin (MLPG) method. 5 types of trial functions, and 6 types of test functions are explored. Different test functions result in different MLPG methods, and six such MLPG methods are presented in this paper. In all these six MLPG methods, absolutely no meshes are needed either for the interpolation of the trial and test functions, or for the integration of the weak-form; while other meshless methods require background cells.… More >

  • Open Access

    ARTICLE

    SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and Their Growth in Structural Components1

    G.P.Nikishkov2, J.H.Park3, S.N.Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 401-422, 2001, DOI:10.3970/cmes.2001.002.401

    Abstract An efficient and highly accurate, Symmetric Galerkin Boundary Element Method - Finite Element Method - based alternating method, for the analysis of three-dimensional non-planar cracks, and their growth, in structural components of complicated geometries, is proposed. The crack is modeled by the symmetric Galerkin boundary element method, as a distribution of displacement discontinuities, as if in an infinite medium. The finite element method is used to perform the stress analysis for the uncracked body only. The solution for the structural component, containing the crack, is obtained in an iteration procedure, which alternates between FEM solution for the uncracked body, and… More >

  • Open Access

    ARTICLE

    Numerical Study of Natural Convection in Square Tilted Solar Cavity Considering Extended Domain

    Toufik Arrif1,2, Abdelmadjid Chehhat3,4,*, Essam Abo-Serie5, Adel Benchabane2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.4, pp. 223-242, 2018, DOI:10.32604/fdmp.2018.01799

    Abstract This work presents a numerical investigation on heat transfer and fluid-dynamic aspects for a solar open cavities in an extended fluid flow domain. The vertical wall inside the open cavities facing the aperture is assumed to be isothermal while the other walls are kept insulated. Heat transfer steady laminar natural convection is studied by solving the non-dimensional governing equations of mass, momentum and energy in the framework of a finite volume method. The analysis are carried out under Rayleigh number range of 9.41×105 to 3.76×106, inclination 0° to 90° and opening ratio 0.25, 0.5 and 1. The model results for… More >

  • Open Access

    ARTICLE

    Electro-Deposition of Asphaltenes from Abu Dhabi Crude Oil/Synthetic Formation Water Mixtures

    Hadil Abu Khalifeh1, Hadi Belhaj2

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.3, pp. 124-135, 2016, DOI:10.3970/fdmp.2016.012.124

    Abstract In this work, asphaltenes precipitation and deposition induced by applying an electric field to Abu Dhabi crude oil sample were studied. The asphaltic particle electrical charge and asphaltic deposits mass at different operating conditions were determined. Direct current (DC) was applied between two graphite electrodes dipped in crude oil/synthetic formation water mixture of 240K ppm salinity. Three current densities of 10, 20, and 30 A/m2 were applied. Deposits were collected on the electrodes surfaces and their mass was recorded using low capacity load cells (up to 50g). Anodic and cathodic deposits were observed at different operating conditions. The results revealed… More >

  • Open Access

    ARTICLE

    Marangoni-Natural Convection in Liquid Metals in the Presence of a Tilted Magnetic Field

    S. Hamimid1, A.Amroune1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 369-384, 2010, DOI:10.3970/fdmp.2010.006.369

    Abstract The Navier-Stokes and energy equations are numerically solved to investigate two-dimensional convection (originating from the combined effect of buoyancy and surface tension forces) in a liquid metal subjected to transverse magnetic fields. In particular, a laterally heated horizontal cavity with aspect ratio (height/width) =1 and Pr=0.015 is considered (typically associated with the horizontal Bridgman crystal growth process and commonly used for benchmarking purposes). The effect of a uniform magnetic field with different magnitudes and orientations on the stability of the two distinct convective solution branches (with a single-cell or two-cell pattern) of the steady-state flows is investigated. The effects induced… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamics Stability of Natural Convection During Phase Change of Molten Gallium in a Three-Dimensional Enclosure

    S. Bouabdallah1,2, R. Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 251-276, 2010, DOI:10.3970/fdmp.2010.006.251

    Abstract In this paper, a numerical study of magnetohydrodynamics stability during phase change of a pure metal (liquid Gallium) in a cubical enclosure is presented. An external magnetic field is applied in X-, Y-, and Z-directions separately. Two electric potential boundary conditions are considered: electrically conducting and insulating walls. The finite-volume method with enthalpy formulation is used to solve the mathematical model in the solid and liquid phases. The Grashof number is fixed at Gr =105and the Hartmann number is varied from Ha= 0 to 200. The effect of magnetic field on the flow field and heat transfer, and on the… More >

  • Open Access

    ARTICLE

    Theoretical and Experimental Investigation of Water Flow through Porous Ceramic Clay Composite Water Filter

    A. K. Plappally1,3, I. Yakub2,3, L. C. Brown1,2,3, A. B. O. Soboyejo1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 373-398, 2009, DOI:10.3970/fdmp.2009.005.373

    Abstract Water flow through point-of-use porous ceramic water treatment filters have been theoretically analyzed in this technical paper. Filters tested were manufactured by combining low cost materials namely, clay and sawdust. Three filters with distinct volume fractions of clay to sawdust (75:25, 65:35 and 50:50) were tested. Sintered clay filters casted in frustum shapes were structurally characterized using mercury intrusion porosimetry. A linear increase in porosity with volume fraction of sawdust was observed. Flow experiments were carried out at constant room temperature and pressure. Potable tap water was used in these studies. Flows through filters occurring with drop in the head… More >

  • Open Access

    ARTICLE

    Molten-Alloy Driven Self-Assembly for Nano and Micro Scale System Integration

    Ehsan Saeedi1, Shaghayegh Abbasi1, Karl F. B ¨ohringer1, Babak A. Parviz1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 221-246, 2006, DOI:10.3970/fdmp.2006.002.221

    Abstract Self-assembly is emerging as one of the main methods for construction of heterogeneous systems consisting of multiple component types in nano- and micro-scales. The engineered self-assembly used for system integration involves preparation of parts that can recognize and bind to each other or a template, and perfection of procedures that allow for high yield self-assembly of these parts into a system. Capillary forces resultant from molten alloys are attractive candidates for driving such self-assembly processes as they can simultaneously provide electrical and mechanical connections. The basic self-assembly process is reviewed here. Selection of the appropriate alloy, a critical issue in… More >

  • Open Access

    ARTICLE

    An Alternative Approach to Minimize the Convection in Growing a Large Diameter Single Bulk Crystal of Si0.25Ge0.75 Alloy in a Vertical Bridgman Furnace

    M. M. Shemirani1, M. Z. Saghir2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 11-21, 2013, DOI:10.3970/fdmp.2013.009.011

    Abstract Producing homogeneous single bulk crystals requires a good understanding of the thermo-solutal behavior in the solvent region. This study explores simulation of the growth of large diameter single bulk crystals of silicon and germanium alloy from its melt utilizing Bridgman method. Both thermal and solutal diffusion of silicon and germanium in the molten SiGe alloy are of interest. It was observed that the diffusion dominates the transport phenomenon in the solvent region especially in the first 25 mm of the model due to having a PeT <<1. It was also found that the control of both radial and axial applied… More >

Displaying 441-450 on page 45 of 464. Per Page